Spodoptera frugiperda has caused significant losses of farmer income in sub-Saharan countries since 2016. This study assessed farmers’ knowledge of S. frugiperda, their perceptions and management practices in Benin. Data were collected through a national survey of 1237 maize farmers. Ninety-one point eight percent of farmers recognized S. frugiperda damage, 78.9% of them were able to identify its larvae, and 93.9% of the maize fields were infested. According to farmers, the perceived yield losses amounted to 797.2 kg/ha of maize, representing 49% of the average maize yield commonly obtained by farmers. Chi-square tests revealed that the severity of the pest attacks was significantly associated with cropping practices and types of grown maize varieties. About 16% of farmers identified francolin (Francolinus bicalcaratus), village weaver (Ploceus cucullatus), and common wasp (Vespula vulgaris) as natural enemies and 5% of them identified yellow nutsedge, chan, shea tree, neem, tamarind, and soybean as repellent plants of S. frugiperda. Most farmers (91.4%) used synthetic pesticides and 1.9% of them used botanical pesticides, which they found more effective than synthetic pesticides. Significant relationships exist between farmers’ management practices, their knowledge, organization membership, and contact with research and extension services. More research is required to further understand the effectiveness of botanical pesticides made by farmers against S. frugiperda and to refine them for scaling-up.
This study characterizes the future changes in extreme rainfall and air temperature in the Mono river basin where the main economic activity is weather dependent and local populations are highly vulnerable to natural hazards, including flood inundations. Daily precipitation and temperature from observational datasets and Regional Climate Models (RCMs) output from REMO, RegCM, HadRM3, and RCA were used to analyze climatic variations in space and time, and fit a GEV model to investigate the extreme rainfalls and their return periods. The results indicate that the realism of the simulated climate in this domain is mainly controlled by the choice of the RCMs. These RCMs projected a 1 to 1.5 °C temperature increase by 2050 while the projected trends for cumulated precipitation are null or very moderate and diverge among models. Contrasting results were obtained for the intense rainfall events, with RegCM and HadRM3 pointing to a significant increase in the intensity of extreme rainfall events. The GEV model is well suited for the prediction of heavy rainfall events although there are uncertainties beyond the 90th percentile. The annual maxima of daily precipitation will also increase by 2050 and could be of benefit to the ecosystem services and socioeconomic activities in the Mono river basin but could also be a threat.
The paper explores how a project implemented in the framework of the LIRA2030 Africa programme is contributing to the achievement of the Sustainable Development Goals (SDG) on water, sanitation and health in the West African coastal cities of Cotonou (Benin) and Lomé (Togo). Based on co-produced knowledge on water, sanitation and health risks, collected through a transdisciplinary approach, we investigated socio-ecological sanitation and the applicability of an Ecohealth model to support SDGs 3, 6 and 11. According to our findings, the basis for the achievement of SDGs in these cities lies in addressing bad sanitation and hygiene related to a linear urban metabolism, poor groundwater quality and the occurrence of health risks (malaria, gastroenteritis, diarrheal). In this regard, the projects contributed by developing socioecological sanitation facilities for groundwater quality improvement and protection and for health risk reduction. An Ecohealth model was also developed to help improve and maintain the quality of groundwater in the study cities to promote healthy living and for sustainability. Social impacts of the SDG achievement could really help in sustainable development and the well-being in the coastal West African cities.
In the coastal cities of West Africa, land use change, rapid population growth, bad sanitation systems and poor environmental governance degrade the quality of groundwater. This study aimed to assess alternative, acceptable, affordable sanitation disposal and practices for groundwater quality rehabilitation in the cities of Cotonou and Lomé. The study was based on the participatory transdisciplinary approach, field surveys, feedback from interactions with stakeholders, experiences of the practitioners and institutional consultations. This multi-stakeholder approach helped to appreciate ecological aspects of sanitation disposal and its implications on water quality improvement. SWOT model was used to analyze the relevance of assessed ecological system. Well water quality is deteriorated by traditional waste management disposal. Ecological sanitation systems are septic tanks on polyethylene, above-ground latrines and phytoremediation technique in the swamp areas. Collected wastes are used for composting and biogas production. Based on the optimist scenario at 2030 horizon, kind success factors of groundwater security are participation of citizens, existence of sanitation market, valorization of the waste by category, low-cost disposal adaptable to the individual, household and neighborhood's scales. The strategic directions rely on funding and public policies for WASH, ecological sanitation disposal, cultural environment and good sanitation practices for emergence of new sanitation system to secure and sustain well water quality. But the social acceptability of ecological disposal is limited by the society's multicultural heritage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.