This study characterizes the future changes in extreme rainfall and air temperature in the Mono river basin where the main economic activity is weather dependent and local populations are highly vulnerable to natural hazards, including flood inundations. Daily precipitation and temperature from observational datasets and Regional Climate Models (RCMs) output from REMO, RegCM, HadRM3, and RCA were used to analyze climatic variations in space and time, and fit a GEV model to investigate the extreme rainfalls and their return periods. The results indicate that the realism of the simulated climate in this domain is mainly controlled by the choice of the RCMs. These RCMs projected a 1 to 1.5 °C temperature increase by 2050 while the projected trends for cumulated precipitation are null or very moderate and diverge among models. Contrasting results were obtained for the intense rainfall events, with RegCM and HadRM3 pointing to a significant increase in the intensity of extreme rainfall events. The GEV model is well suited for the prediction of heavy rainfall events although there are uncertainties beyond the 90th percentile. The annual maxima of daily precipitation will also increase by 2050 and could be of benefit to the ecosystem services and socioeconomic activities in the Mono river basin but could also be a threat.
Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.