Plants directly assimilate minerals from the environment and thus are key for acquisition of metals by all subsequent consumers. Limited bio-availability of copper, zinc and iron in soil decreases both the agronomic productivity and the nutrient quality of crops. Understanding the molecular mechanisms underlying metal homeostasis in plants is a prerequisite to optimizing plant yield and metal nutrient content. To absorb and maintain a balance of potentially toxic metal ions, plants utilize poorly understood mechanisms involving a large number of membrane transporters and metalbinding proteins with overlapping substrate specificities and complex regulation. To better understand the function and the integrated regulation, we analyzed in Arabidopsis the expression patterns in roots and in leaves of 53 genes coding for known or potential metal transporters, in response to copper, zinc, and iron deficiencies in Arabidopsis. Comparative analysis of gene expression profiles revealed specific transcriptional regulation by metals of the genes contrasting with the known wide substrate specificities of the encoded transporters. Our analysis suggested novel transport roles for several gene products and we used functional complementation of yeast mutants to correlate specific regulation by metals with transport activity. We demonstrate that two ZIP genes, ZIP2 and ZIP4, are involved in copper transport. We also present evidence that AtOPT3, a member of the oligopeptide transporter gene family with significant similarities to the maize iron-phytosiderophore transporter YS1, is regulated by metals and heterologous expression AtOPT3 can rescue yeast mutants deficient in metal transport.All organisms require metal prosthetic groups for their unique catalytic and structural properties. In proteins, copper and iron catalyze reduction-oxidation reactions, while zinc plays an essential structural or enzymatic role. Yet most metal ions are very reactive and can be toxic to cells when present in excess. Thus, it is important for organisms to maintain adequate levels of metals in tight homeostasis using complex and often evolutionarily conserved mechanisms for the uptake and transport of low solubility metals and storage of metal ions in a non-toxic form. Despite rapid progress in recent years of our understanding of metal homeostasis in yeast, (1) our knowledge of metal metabolism in plants is still rudimentary (2).A large number of cation transporters potentially involved in metal ion homeostasis have been identified on the genome of the model plant Arabidopsis thaliana (3). Several members of the 15 ZIP gene family (4) and of the 6 NRAMP family of transporters (3) have been characterized and shown to be involved in metal uptake and transport in plants (5-10). ABC transporters (11) and P-type ATPase pumps (12, 13) are also known to be involved in metal ions trafficking metals into organelles. Since metals are cytotoxic as free ions, they are chelated for both intracellular storage and long-distance transport. These chelators are eith...
Virtually all organisms on earth depend on transition metals for survival. Iron and copper are particularly important because they participate in vital electron transfer reactions, and are thus cofactors of many metabolic enzymes. Their ability to transfer electrons also render them toxic when present in excess. Disturbances of iron and copper steady-state levels can have profound effects on cellular metabolism, growth and development. It is critical to maintain these metals in a narrow range between utility and toxicity. Organisms ranging from bacteria and plants to mammals have developed sophisticated mechanisms to control metal homeostasis. In this review, we will present an overview of the current understanding of iron and copper metabolism in yeast, and the utility of yeast as a model organism to investigate iron and copper metabolism in mammals and plants.
Arsenic, a human carcinogen that is associated with an increased risk of bladder cancer, is commonly found in drinking water. An important mechanism by which arsenic is thought to be carcinogenic is through the induction of epigenetic changes that lead to aberrant gene expression. Previously, we reported that the SAS2 gene is required for optimal growth of yeast in the presence of arsenite (As III ). Yeast Sas2p is orthologous to human MYST1, a histone 4 lysine 16 (H4K16) acetyltransferase. Here, we show that H4K16 acetylation is necessary for the resistance of yeast to As III through the modulation of chromatin. The role of MYST1 and H4K16 acetylation in arsenic toxicity and carcinogenesis was further explored in human bladder epithelial cells. The expression of MYST1 was knocked down in UROtsa cells, a model of bladder epithelium that has been used to study arsenic-induced carcinogenesis. Silencing of MYST1 reduced acetylation of H4K16, and induced sensitivity to As III and to its more toxic metabolite monomethylarsonous acid (MMA III ) at doses relevant to high environmental human exposures. In addition, both As III and MMA III treatments decreased global H4K16 acetylation levels in a dose-and time-dependent manner. This indicates that acetylated H4K16 is required for resistance to arsenic and that a reduction in its levels as a consequence of arsenic exposure may contribute to toxicity in UROtsa cells. Based on these findings, we propose a novel role for the MYST1 gene in human sensitivity to arsenic.
Iron and copper are essential nutrients for life as they are required for the function of many proteins but can be toxic if present in excess. Accumulation of these metals in the human body as a consequence of overload disorders and/or high environmental exposures has detrimental effects on health. The budding yeast Saccharomyces cerevisiae is an accepted cellular model for iron and copper metabolism in humans primarily because of the high degree of conservation between pathways and proteins involved. Here we report a systematic screen using yeast deletion mutants to identify genes involved in the toxic response to growth-inhibitory concentrations of iron and copper sulfate. We aimed to understand the cellular responses to toxic concentrations of these two metals by analyzing the different subnetworks and biological processes significantly enriched with these genes. Our results indicate the presence of two different detoxification pathways for iron and copper that converge toward the vacuole. The product of several of the identified genes in these pathways form molecular complexes that are conserved in mammals and include the retromer, endosomal sorting complex required for transport (ESCRT) and AP-3 complexes, suggesting that the mechanisms involved can be extrapolated to humans. Our data also suggest a disruption in ion homeostasis and, in particular, of iron after copper exposure. Moreover, the identification of treatment-specific genes associated with biological processes such as DNA double-strand break repair for iron and tryptophan biosynthesis for copper suggests differences in the mechanisms by which these two metals are toxic at high concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.