The process of laser welding of sheets of HSLA (high-strength low-alloy steel), DP600 (dual-phase steel) and TRIP steels was investigated. A weld was successfully made in a double-sided hot-dip galvanized sheet with a thickness of 0.78–0.81 mm using a laser power of 2 kW per pass without any pretreatment of the weld zone. Microstructure studies revealed the presence of martensitic and ferritic phases in the weld zone, which could be associated with a high rate of its cooling. This made it possible to obtain good strength of the weld, while maintaining sufficient ductility. A relationship between the microstructural features and mechanical properties of welds made in the investigated steels has been established. The highest hardness was found in the alloying region of steels due to the formation of martensite. The hardness test results showed a very narrow soft zone in the heat affected zone (HAZ) adjacent to the weld interface, which does not affect the tensile strength of the weld. The ultimate tensile strength of welds for HSLA steel was 340–450 MPa, for DP600 steel: 580–670 MPa, for TRIP steel: ~700 MPa, respectively, exceeding the strength of base steels.
The paper presents research results on the quality of hardfacing layers made during the renovation of unheated mold surfaces designed for injection of aluminum alloys using the plasma transferred arc (PTA) technology. As mold material, the medium alloy steel X38CrMoV5-1 (H11) was used. For the formation of functional layers, three types of additives in the form of powder were applied: two types on an iron basis with the designation HSS 23 and HSS 30 and one type on a nickel basis with the designation DEW Nibasit 625-P. The hardfacing layers were made on a 120 × 350 × 50 mm plate in two layers on the plasma hardfacing machine PPC 250 R6. The quality of the layers was evaluated by means of nondestructive and destructive tests. The surface integrity of the layers was assessed using visual and capillary tests. The samples passed these tests. The impact of the parameters used and the mixing of the hardfacing metal with base material, as well as the structure analysis, were assessed by means of light and electron microscopy (SEM). The chemical composition of the elements was determined by energy-dispersive X-ray spectroscopy (EDX) analysis using a SEM microscope. The hardness of the individual layers was evaluated. Since, during operation, molds are subjected to significant wear due to friction, the friction coefficients for selected temperatures were determined by the equipment for the evaluation of tribology properties. Based on the experiments conducted, all three types of additives can be used for renovation. However, from a tribology perspective, the additive DEW Nibasit 625-P on a nickel alloy basis is recommended for renovation.
Experimental work was focused on the restoration of functional surfaces of shaped parts of the molds for high-pressure casting of aluminum alloys. Paper presents results of the research aimed at determination of the quality of renovation layers applied by laser technology and TOP TIG technology. The TruDisk 4002 solid-state disk laser and the AirLiquide TOPTIG 220 welding power source were used to create the layers. Clad was applied to the base material of nickel-chromium-molybdenum vanadium steel 1.2714, DIN-56NiCrMoV7, with a hardness of 44 HRC. Uddeholm Deivar 1.2344, DIN-X40CrMoV51 wire with a 1.2 mm diameter was used as an additive material. The clad quality was evaluated using the light and electron microscopy and EDX microanalysis. The size of the heat affected zone (HAZ) and the presence of internal defects in the clads were determined. HAZ was set as max. a min. Value. Experimental work was supplemented by evaluation of tribological properties of clads by Pin-on-disc method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.