Sponges (Porifera), the simplest and earliest multicellular organisms, are thought to have evolved from their unicellular ancestors about 1 billion years ago by developing cell-recognition and adhesion mechanisms to discriminate against ''non-self.'' Consequently, they are used as models for investigating recognition phenomena. Cellular adhesion of marine sponges is an event involving adherence of extracellular proteoglycan-like molecules, otherwise known as aggregation factors (AFs). In a calciumindependent process the AFs adhere to the cell surface, and in a calcium-dependent process they exhibit AF self-association. A mechanism which has been implied but not definitely proven to play a role in the calcium-dependent event is self-recognition of defined carbohydrate epitopes. For the red beard sponge, Microciona prolifera, two carbohydrate epitopes, a sulfated disaccharide and a pyruvylated trisaccharide, have been implicated in cellular adhesion. To investigate this phenomenon a system has been designed, by using surface plasmon resonance detection, to mimic the role of carbohydrates in cellular adhesion of M. prolifera. The results show self-recognition of the sulfated disaccharide to be a major force behind the calcium-dependent event. The interaction is not simply based on electrostatic interactions, as other sulfated carbohydrates analyzed by using this procedure did not selfassociate. Furthermore, the interaction is completely eradicated on substitution of Ca 2؉ ions by either Mg 2؉ or Mn 2؉ ions. This physiologically relevant recognition mechanism confirms the existence of true carbohydrate self-recognition, and may have significant implications for the role of carbohydrates in cellular recognition of higher organisms. W eak polyvalent interactions play an important role in biological processes. There is growing evidence that carbohydrates, found on the surfaces of all living cells, are functional constituents in cell-cell interactions. At present, only a few examples of low-affinity carbohydrate-carbohydrate interactions are known (1-5). For example, pioneering work by Hakomori and his colleagues (1-3) has shown glycosphingolipid self-interaction to occur by way of multivalent interaction of Lewis X epitopes.Since 1900, marine sponges have been used as primitive models for studying the phenomenon of cell recognition. Knowledge of the recognition mechanisms of these simple organisms, hypothetically situated at the foot of the metazoan kingdom, may contribute to the understanding of cell-cell adhesion events within higher organisms. Adhesion of marine sponges is an event that involves both calcium-independent adherence of proteoglycan-like molecules, named aggregation factors (AFs), to the cell surface, and calcium-dependent AF self-association (6-8). The calcium-dependent event is species-specific, as illustrated by the rapid self-association and sorting, on the addition of calcium ions, of a mixture of colored (pink, yellow, and white) proteoglycan-coated beads, each color corresponding to a different s...
The use of the road map based on Sigma Metrics leads to fast and easy implementation of optimal Westgard QC rules.
The development of the humoral anti-glycan immune response of chimpanzees, either or not vaccinated with radiation-attenuated Schistosoma mansoni cercariae, was followed during 1 year after infection with S. mansoni. During the acute phase of infection both the vaccinated and the control chimpanzees produce high levels of immunoglobulin G (IgG) antibodies against carbohydrate structures that are characteristic for schistosomes carrying the Fucalpha1-3GalNAc and Fucalpha1-2Fucalpha1-3GlcNAc motifs, but not to the more widespread occurring structures GalNAcbeta1-4GlcNAc, GalNAcbeta1-4(Fucalpha1-3)GlcNAc, and Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis(x)). In addition, high levels of IgM antibodies were found against the trimeric Lewis(x) epitope. Apparently, the schistosome-characteristic carbohydrate structures are dominant epitopes in the anti-glycan humoral immune response of the chimpanzees. All chimpanzees showed an increase in the level of antibodies against most of the carbohydrate structures tested directly after vaccination, peaking at challenge time and during the acute phase of infection. With the exception of anti-F-LDN antibody responses, the anti-carbohydrate antibody responses upon schistosome infection of the vaccinated animals were muted in comparison to the control animals.
The influence of interference by hemolysis, icterus and lipemia on the results of routine chemistries may lead to wrong interpretations. The H-, I- and L-indices that can be measured by the Beckman LX-20 instrument (Beckman Coulter) in serum or plasma samples are a reliable semi-quantitative measure of the size of these interferences. A survey carried out in 16 Dutch clinical laboratories on the use of these indices demonstrated that in several of these laboratories, the influence of interferences is largely underestimated. Therefore, a multicenter study was carried out in which we examined the interference of hemolysis, icterus and lipemia on 32 analytes. On the basis of biological variation, we decided on cutoff indices above which analytically significant interference exists. We found analytically significant interference by hemolysis, icterus or lipemia, in 12, 7 and 15 of the 32 analytes studied, respectively. Flagging of results on the basis of analytically significant interference, however, results in too many clinically insignificant comments. On the basis of clinical significance, we conclude that significant interference by hemolysis, icterus or lipemia is present in only 5, 6 and 12 of the analytes studied, respectively. Use of the cutoff indices presented here facilitates optimal use of the LX-20 indices to prevent reporting of wrong results due to interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.