An optimization of the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxy benzotriazole mediated conjugation of the polysaccharide chitosan with functional carboxylic acids was shown. Optimal parameters that enable resource-efficient synthesis of highly functionalized chitosan were identified. In particular, use of only catalytic instead of stoichiometric amounts of hydroxy benzotriazole and tight control of pH in reaction mixture resulted in highly efficient incorporation of the desired moieties as side chains in chitosan. As a result, the model reactant 4-azidobenzoic acid was incorporated resulting in a degree of substitution of over 30% with very high coupling efficacy of up to 90%. Similar results were obtained with other carboxylic acids such as methacrylic acid, 3-(2-furyl) propionic acid and 3-maleimido propionic acid, highlighting the broad applicability of our findings for the functionalization of chitosan.
The fabrication of micron-sized poly(methyl methacrylate) (PMMA) polymer optical fibers doped with rhodamine B as an organic dye is demonstrated.Highly aligned and defect-free fibers are fabricated by using the stable jet electrospinning (SJES) method and systematically varying critical parameters such as solvent type and polymer concentration. At optimal conditions, for example, a polymer concentration of 35 wt% of PMMA in butanone, ribbonshaped fibers with a smooth surface and diameter of about 20 μm could be spun using SJES mode and deposited on a rotating drum as target in a highly aligned manner. Photoluminescence spectra of the doped fibers excited longitudinally and transversely with a laser show an excitation peak with fullwidth-at-half-maximum of only 5.05 nm and a low lasing threshold at a pump energy of 0.55 μJ, indicating that SJES could become a new source of amplified optics components or organic solid-state fiber lasers.
The main focus of this study is to elucidate and optimize the electrospinning process for highly modified fungal chitosan. An efficient one‐step process for functionalization of chitosan with arylazide and other desired functional groups via amidation is used for synthesis. Critical electrospinning process parameters, namely, molecular weight, concentration, and ratio of chitosan and additive poly(ethylene oxide) as well as degree of substitution of chitosan are identified by systematic parameter variation following design‐of‐experiment guidelines. Their influence on the viscoelastic properties of spinning solutions is studied and attributed to changes in chain entanglements. These changes result in drastic shifts in the electrohydrodynamic jet behavior and the resulting fiber morphologies. When the viscosity is increased above a critical limit, complete cancellation of whipping instabilities is observed, resulting in a stable linear jet and highly aligned but partly coalescing microfibers. It is shown how this process conditions can be avoided and how the production of uniform and defect‐free nanofibers from highly functional chitosan can be carried out. In addition, a new photocrosslinking method for generation of water and acid stable chitosan nanofiber meshes is established.
Stable jet electrospinning (SJES) is a special form of optical fiber generation that prevents chaotic fiber whipping typical for conventional electrospinning procedures. Incorporation of highly emissive semiconductor nanoplatelets (NPLs) in such fibers has very high potential in optical data transmission, optological circuits, fiber lasers, solar light concentrators and many other fields because NPLs exhibit strongly directed emission from their surface plane due to various in‐plane transition dipole moments. However, potential orientation control of 2D‐NPLs in SJES is entirely unknown as electric fields and various mechanical forces contribute in a complex manner simultaneously. Here, the observation of counter‐intuitive yet very beneficial orientation of rectangular CdSe/CdS 2D‐NLP in SJES perpendicular to the fiber drawing axis is reported. Scanning electron microscopy, 3D‐single particle excitation polarization microscopy, 3D‐photogoniometry, polarized emission spectroscopy and small angle X‐ray scattering (SAXS) demonstrate aggregation free perpendicular alignment of the NPLs in poly(methyl methacrylate) (PMMA) fibers, resulting in dominant emission in directions parallel to the fiber. It is suggested that the observed vertical alignment is due to normal forces resulting from viscoelastic expansion when the polymer solution leaves the cannula (Barus effect) and that using such perpendicular nano‐emitter alignment forces allows for the generation of novel materials also beyond fibers.
This research focuses on exploring the potential of mycelium as a sustainable alternative to wood or solid foam in pultruded glass fiber-reinforced plastic (GFRP) sandwich profiles. The study evaluates the performance and the environmental sustainability potential of this composite by mechanical tests and life cycle assessment (LCA). Analysis and comparison of pultruded sandwich profiles with mycelium, polyurethane (PUR) foam and chipboard demonstrate that mycelium is competitive in terms of its performance and environmental impact. The LCA indicates that 88% of greenhouse gas emissions are attributed to mycelium production, with the heat pressing (laboratory scale) being the main culprit. When pultruded profiles with mycelium cores of densities 350 and 550 kg/m³ are produced using an oil-heated lab press, a global warming potential (GWP) of 5.74 and 9.10 kg CO2-eq. per functional unit was calculated, respectively. When using an electrically heated press, the GWP decreases to 1.50 and 1.78 kg CO2-eq. Compared to PUR foam, a reduction of 23% in GWP is possible. In order to leverage this potential, the material performance and the reproducibility of the properties must be further increased. Additionally, an adjustment of the manufacturing process with in situ mycelium deactivation during pultrusion could further reduce the energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.