Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions. This applies especially to refractory high-entropy alloys (RHEAs), which are difficult to synthesize and process by conventional methods. To evaluate a possible way to accelerate the process, high-throughput laser metal deposition was used in this work to prepare a quinary RHEA, TiZrNbHfTa, as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders. Compositionally graded variants of the quinary RHEA were also analyzed. Our results show that the influence of various parameters such as powder shape and purity, alloy composition, and especially the solidification range, on the processability, microstructure, porosity, and mechanical properties can be investigated rapidly. The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders, while substitutional solid solution strengthening played a minor role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.