In the western world, approximately 50% of all cancer patients receive radiotherapy alone or in combination with surgery or chemotherapy. Image-guided radiotherapy (IGRT) has in recent years been introduced to enhance precision of the delivery of radiation dose to tumor tissue. Fiducial markers are often inserted inside the tumor to improve IGRT precision and to enable monitoring of the tumor position during radiation therapy. In the present article, a liquid fi ducial tissue marker is presented, which can be injected into tumor tissue using thin and fl exible needles. The liquid fi ducial has high radioopacity, which allows for marker-based image guidance in 2D and 3D X-ray imaging during radiation therapy. This is achieved by surface-engineering gold nanoparticles to be highly compatible with a carbohydrate-based gelation matrix. The new fi ducial marker is investigated in mice where they are highly biocompatible and stable after implantation. To investigate the clinical potential, a study is conducted in a canine cancer patient with spontaneous developed solid tumor in which the marker is successfully injected and used to align and image-guide radiation treatment of the canine patient. It is concluded that the new fi ducial marker has highly interesting properties that warrant investigations in cancer patients.
This study shows that diazotized β-cyclodextrin (β-CD) can be produced, isolated, and immobilized onto glassy carbon and gold surfaces. 4-(1,2,3-Triazol-4-yl)benzenediazonium-β-CD tetrafluoroborate (pDz-β-CD) and 3-(1,2,3-triazol-4-yl)benzenediazonium-β-CD tetrafluoroborate (mDz-β-CD) were successfully prepared by Cu((I))-catalyzed azide alkyne coupling (CuAAC) of 6-monodeoxy-6-monoazido-β-cyclodextrin (N(3)-β-CD) and 4-ethynylaniline and 3-ethynylaniline, respectively, followed by diazotization. The products were isolated and stored successfully for several months at -18 °C. The intermediates and products were verified by Attenuated Total Reflectance Fourier Transform Infrared, Nuclear Magnetic Resonance, and Heteronuclear Single Quantum Coherence. pDz-β-CD and mDz-β-CD were immobilized onto glassy carbon and gold surfaces facilitated by electrochemical reduction of the diazonium group. The thus generated aryl radical reacted with the surface. The modified gold surfaces were investigated by Polarization Modulation Infrared Reflection Absorption Spectroscopy and cyclic voltammetry employing the redox probe K(3)Fe(CN)(6) to analyze the extent of blocking of the surfaces. Finally, the availability of the cavity of surface-immobilized β-CD was shown by complexation of ferrocene followed by cyclic voltametric analysis.
Long circulating liposomes entrapping iodinated and radioiodinated compounds offer a highly versatile theranostic platform. Here we report a new methodology for efficient and high-yield loading of such compounds into liposomes, enabling CT/SPECT/PET imaging and 131I-radiotherapy.Methods: The CT contrast agent diatrizoate was synthetically functionalized with a primary amine, which enabled its remote loading into PEGylated liposomes by either an ammonium sulfate- or a citrate-based pH transmembrane gradient. Further, the amino-diatrizoate was radiolabeled with either 124I (t1/2 = 4.18 days) for PET or 125I (t1/2 = 59.5 days) for SPECT, through an aromatic Finkelstein reaction.Results: Quantitative loading efficiencies (>99%) were achieved at optimized conditions. The 124I-labeled compound was remote-loaded into liposomes, with an overall radiolabeling efficiency of 77 ± 1%, and imaged in vivo in a CT26 murine colon cancer tumor model by PET/CT. A prolonged blood circulation half-life of 19.5 h was observed for the radiolabeled liposomes, whereas injections of the free compound were rapidly cleared. Lower accumulation was observed in the spleen, liver, kidney and tumor than what is usually seen for long-circulating liposomes.Conclusion: The lower accumulation was interpreted as release of the tracer from the liposomes within these organs after accumulation. These results may guide the design of systems for controlled release of remote loadable drugs from liposomes.
A new type of tissue marker for local administration to non-palpable breast tumors has been developed. The surgical guidance marker is based on derivatives of the biomaterial sucrose acetate isobutyrate and unlike currently used markers it is injectable in the tissue using thin needles, reducing the discomfort to the patients significantly. The marker confers CT contrast and has radioactive properties, meaning it also could find use in brachytherapy. The design of the iodine-125 labeled fiducial tissue marker enables control of dosimetry as well as a choice of iodine isotope used. The marker is anticipated to be clinical applicable due to its contrast performance in mice and its potential for enhanced flexibility in surgical procedures, compared to current methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.