Subjects who have a chronic whiplash injury show a characteristic pattern of trunk sway that is different from that of other patient groups with balance disorders. Balance was most unstable during gait involving task-specific head movements which possibly enhance a pathologic vestibulo-cervical interaction.
Separating progressive supranuclear palsy (PSP) from Parkinson's disease (PD) and multiple system atrophy (MSA) is often challenging in early disease but is important for appropriate management. Magnetic resonance imaging (MRI) can aid the diagnostics and manual 2D measurements are often used. However, new fully automatic brainstem volumetry could potentially be more accurate and increase availability of brainstem metrics. Methods: Clinical 3D T1-weighted MRI were obtained from 196 consecutive patients; 29 PSP, 27 MSA, 140 PD. Midbrain-pons ratio and magnetic resonance parkinsonism index (MRPI) 1.0 and 2.0 were manually calculated, and intra-rater and inter-rater reliability was assessed. FreeSurfer was used to automatically segment brainstem substructures, normalized to the intracranial volume. The robustness of the automated analysis was evaluated in 3 healthy controls. The diagnostic accuracy of the brainstem biomarkers was assessed using receiver operating characteristic curves. Results: Automatic brainstem volumetry had good repeatability/reproducibility with intra-scanner coefficient of variation 0.3-5.5% and inter-scanner coefficient of variation 0.9-8.4% in the different brainstem regions. Midbrain volume performs better than planimetric measurements in separating PSP from PD (Area under the curve (AUC) 0.90 compared with 0.81 for midbrain-pons ratio (p = 0.019), 0.77 for MRPI 1.0 (p = 0.007) and 0.81 for MRPI 2.0 (p = 0.021)). Midbrain volume performed on par with planimetry for separation between PSP and MSA. Conclusion: Automatic brainstem segmentation is robust and shows promising diagnostic performance in separating PSP from PD and MSA. If further developed, it could play a role in diagnosing PSP and could potentially be used as an outcome in clinical trials.
There is a need for methods that distinguish Parkinson’s disease (PD) from progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), which have similar characteristics in the early stages of the disease. In this prospective study, we evaluate mapping of apparent susceptibility based on susceptibility weighted imaging (SWI) for differential diagnosis. We included 134 patients with PD, 11 with PSP, 10 with MSA and 44 healthy controls. SWI data were processed into maps of apparent susceptibility. In PSP, apparent susceptibility was increased in the red nucleus compared to all other groups, and in globus pallidus, putamen, substantia nigra and the dentate nucleus compared to PD and controls. In MSA, putaminal susceptibility was increased compared to PD and controls. Including all studied regions and using discriminant analysis between PSP and PD, 100% sensitivity and 97% specificity was achieved, and 91% sensitivity and 90% specificity in separating PSP from MSA. Correlations between putaminal susceptibility and disease severity in PD could warrant further research into using susceptibility mapping for monitoring disease progression and in clinical trials. Our study indicates that susceptibility in deep nuclei could play a role in the diagnosis of atypical parkinsonism, especially in PSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.