In order to utilize static posturography as a tool with which to diagnose pathological balance disorders, it is necessary to understand the contribution of psychological factors such as fear of falling. In this study we examined kinetic and kinematic parameters during quiet stance of eight young healthy adults standing under three conditions which posed increasing levels of postural threat. Participants were required to stand quietly, both with and without visual information and with normal or reduced vestibular information for 2-min periods at each of three surface conditions: ground level (low threat), 81 cm above the ground completely surrounded by a support surface (medium threat) and 81 cm above ground at the edge of the surface (high threat). In addition to calculating displacement and frequency measures for movements of centre of pressure (COP) and centre of mass (COM), a measure of stiffness was derived from the difference between COP-COM signal. Mean EMG activity was recorded bilaterally from anterior and posterior muscles of the lower and upper leg. A stiffening strategy was adopted when individuals stood under high threat conditions involving significant changes in kinematic, kinetic and EMG variables. The A-P stiffness constant increased significantly (27.5%) for the high threat compared to low threat condition, independent of vision or vestibular information. Changes in stiffness were accompanied by: (1) backward shift of the mean A-P position of COP and COM, (2) increased mean power frequency and decreased amplitude displacement of the COP and (3) decreased amplitude displacements of the COM. Of the significant changes observed in mean EMG activity with increased postural threat, only tibialis anterior was significantly correlated with increased stiffness, while activity in soleus, medial gastrocnemius and rectus femoris was highly correlated with mean position of COP.
Objective: We investigated trunk control, protective arm movements, and electromyographic responses to multidirectional support-surface rotations in patients with Parkinson's disease (PD), aiming to better understand the pathophysiology underlying postural instability in PD, on and off antiparkinson medication. Methods: Ten patients with PD were compared with 11 age matched healthy controls. Seven patients were also tested without (OFF) antiparkinson medication. All subjects received rotational perturbations (7.5 deg amplitude) that were randomly delivered in six different directions. Results: The PD patients had decreased trunk rotation and ankle torque changes, consistent with a stiffening response. Stiffness appeared to be caused by the combined action of three factors: cocontraction that interfered in particular with the normal response asymmetry in trunk muscles; increased response amplitudes in agonist and antagonist muscles at both medium (,80 ms) and balance correcting (,120 ms) response latencies; and increased background activity in lower leg, hip, and trunk muscles. Although the patients had significantly earlier onset of deltoid muscle responses, this gave no functional protection because the arm movements were abnormally directed. Most instability in PD occurred for backward falls, with or without a roll component. Medication provided partial improvement in arm responses and trunk roll instability. Conclusions: Our results confirm previous findings in ankle muscles, and provide new information on balance impairments in hip, trunk, and arm responses in PD.
We investigated the effects of ageing on balance corrections induced by sudden stance perturbations in different directions. Effects were examined in biomechanical and electromyographic (EMG) recordings from a total of 36 healthy subjects divided equally into three age groups (20-34, 35-55 and 60-75 years old). Perturbations consisted of six combinations of support-surface roll (laterally) and pitch (forward-backward) each with 7.5 deg amplitude (2 pure pitch, and 4 roll and pitch) delivered randomly. To reduce stimulus predictability further and to investigate scaling effects, perturbations were at either 30 or 60 deg s _1 . In the legs, trunk and arms we observed age-related changes in balance corrections. The changes that appeared in the lower leg responses included smaller stretch reflexes in soleus and larger reflexes in tibialis anterior of the elderly compared with the young. For all perturbation directions, onsets of balance correcting responses in these ankle muscles were delayed by 20-30 ms and initially had smaller amplitudes (between 120-220 ms) in the elderly. This reduced early activity was compensated by increased lower leg activity after 240 ms. These EMG changes were paralleled by comparable differences in ankle torque responses, which were initially (after 160 ms) smaller in the elderly, but subsequently greater (after 280 ms). Findings in the middle-aged group were generally intermediate between the young and the elderly groups. Comparable results were obtained for the two different stimulus velocities. Stimulus-induced trunk roll, but not trunk pitch, changed dramatically with increasing age. Young subjects responded with early large roll movements of the trunk in the opposite direction to platform roll. A similarly directed but reduced amplitude of trunk roll was observed in the middle-aged. The elderly had very little initial roll modulation and also had smaller stretch reflexes in paraspinals. Balance-correcting responses (over 120-220 ms) in gluteus medius and paraspinals were equally well tuned to roll in the elderly, as in the young, but were reduced in amplitude. Onset latencies were delayed with age in gluteus medius muscles. Following the onset of trunk and hip balance corrections, trunk roll was in the same direction as support-surface motion for all age groups and resulted in overall trunk roll towards the fall side in the elderly, but not in the young. Protective arm movements also changed with age. Initial arm roll movements were largest in the young, smaller in the middle aged, and smallest in the elderly. Initial arm roll movements were in the same direction as initial trunk motion in the young and middle aged. Thus initial roll arm movements in the elderly were directed oppositely to those in the young. Initial pitch motion of the arms was similar across age groups. Subsequent arm movements were related to the amplitude of deltoid muscle responses which commenced at 100 ms in the young and 20-30 ms later in the elderly. These deltoid muscle responses preceded additional arm ro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.