A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the Vøring and Møre basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago).
Large volumes of greenhouse gases such as CH 4 and CO 2 form by contact metamorphism of organic-rich sediments in aureoles around sill intrusions in sedimentary basins. Thermogenic gas generation and dehydration reactions in shale are treated numerically in order to quantify basin-scale devolatilization. We show that aureole thicknesses, defined as the zone of elevated metamorphism relative to the background level, vary within 30-250% of the sill thickness, depending on the temperature of the host-rock and intrusion, besides the sill thickness. In shales with total organic carbon content of >5 wt.%, CH 4 is the dominant volatile (85-135 kg/m 3 ) generated through organic cracking, relative to H 2 O-generation from dehydration reactions (30-110 kg/m 3 ). Even using conservative estimates of melt volumes, extrapolation of our results to the scale of sill complexes in a sedimentary basin indicates that devolatilization can have generated $2700-16200 Gt CH 4 in the Karoo Basin (South Africa), and $600-3500 Gt CH 4 in the Vøring and Møre basins (offshore Norway). The generation of volatiles is occurring on a time-scale of 10-1000 years within an aureole of a single sill, which makes the rate of sill emplacement the time-constraining factor on a basin-scale. This study demonstrates that thousands of gigatons of potent greenhouse gases like methane can be generated during emplacement of Large Igneous Provinces in sedimentary basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.