The hypothesis was tested that cardiovascular and neuroendocrine (norepinephrine, renin, and vasopressin) responses to central blood volume expansion are blunted in compensated heart failure (HF). Nine HF patients [New York Heart Association class II-III, ejection fraction = 0.28 +/- 0.02 (SE)] and 10 age-matched controls (ejection fraction = 0.68 +/- 0.03) underwent 30 min of thermoneutral (34.7 +/- 0.02 degrees C) water immersion (WI) to the xiphoid process. WI increased (P < 0.05) central venous pressure by 3.7 +/- 0.6 and 3.2 +/- 0.4 mmHg and stroke volume index by 12.2 +/- 2.1 and 7.2 +/- 2.1 ml. beat(-1). m(-2) in controls and HF patients, respectively. During WI, systemic vascular resistance decreased (P < 0.05) similarly by 365 +/- 66 and 582 +/- 227 dyn. s. cm(-5) in controls and HF patients, respectively. Forearm subcutaneous vascular resistance decreased by 19 +/- 7% (P < 0.05) in controls but did not change in HF patients. Heart rate decreased less during WI in HF patients, whereas release of norepinephrine, renin, and vasopressin was suppressed similarly in the two groups. We suggest that reflex control of forearm vascular beds and heart rate is blunted in compensated HF but that baroreflex-mediated systemic vasodilatation and neuroendocrine responses to central blood volume expansion are preserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.