The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5-to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance.
Biodegradable nanoparticles based on stearic acid-modified poly(glycerol adipate) (PGAS) are promising carriers for drug delivery. In order to investigate the impact of the particle interface characteristics on the biological fate, PGAS nanoparticles are covalently and noncovalently coated with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers. HPMA copolymer-modified PGAS nanoparticles have similar particle sizes, but less negative zeta-potentials. Nanoparticles are double labeled with the fluorescent dyes DiR (noncovalently) and DYOMICS-676 (covalently bound to HPMA copolymer), and their biodistribution is investigated noninvasively by multispectral optical imaging. Both covalent and noncovalent coatings cause changes in the pharmacokinetics and biodistribution in healthy and tumor-bearing mice. In addition to the intended tumor accumulation, high signals of both fluorescent dyes are also observed in other organs, including liver, ovaries, adrenal glands, and bone. The unintended accumulation of nanocarriers needs further detailed and systematic investigations, especially with respect to the observed ovarian and adrenal gland accumulation.
Vascular endothelial growth factor (VEGF) inhibition by the addition of bevacizumab to the chemotherapy regimen of metastatic colorectal cancer leads to an improved outcome. However, anti-angiogenic tumor therapy targeting a single factor may be limited by complementary mechanisms. Angiopoietin-2 (Ang-2, ANGPT2) is another important factor that cooperates with VEGF to drive tumor angiogenesis. It was shown that high Ang-2 levels are associated with a poor clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Therefore, combined inhibition of VEGF and Ang-2 was supposed to improve anti-angiogenic therapy. Here, we evaluated the efficacy of a bispecific antibody (CrossMab) co-targeting VEGF and Ang-2 in combination with chemotherapy in a chemoresistant colorectal carcinoma model. Antitumor activity was evaluated in athymic nude mice bearing subcutaneous DLD1 xenograft tumors and treated with anti-VEGF (B20), anti-Ang-2 (LC06) and anti-VEGF/Ang-2 (CrossMab) antibodies. Chemotherapy consisted of 5-FU and irinotecan. Resected tumors were analyzed immunohistochemically. First, an impact of targeting each single factor but also a clear advantage of co-targeting both factors could be demonstrated. Accordingly, tumor tissue showed strong staining for VEGF and Ang-2. Chemotherapy alone was less effective. Efficient tumor growth inhibition could be achieved by treatment with anti-VEGF/chemotherapy, single CrossMab and CrossMab/chemotherapy, which resulted in 3 out of 10, 6 out of 10 and 10 out of 10 complete responses, respectively, during seven weeks. Complete retarded tumors were characterized by massive intratumoral necrosis surrounded by layers of vital tumor cells and connective tissue with CD31-positive vessels at the periphery. In some cases, a distinct feature known as vessel co-option could be observed. In conclusion, the data from this model clearly support the strategy of co-targeting VEGF and Ang-2 and further demonstrate the beneficial impact of co-treatment with chemotherapy. The clear superiority of the CrossMab-containing regimen compared to clinical standard anti-VEGF/chemotherapy warrants further analyses in other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.