Background An international Delphi panel has defined a harmonized protocol (HarP) for the manual segmentation of the hippocampus on MR. The aim of this study is to study the concurrent validity of the HarP toward local protocols, and its major sources of variance. Methods Fourteen tracers segmented 10 Alzheimer's Disease Neuroimaging Initiative (ADNI) cases scanned at 1.5 T and 3T following local protocols, qualified for segmentation based on the HarP through a standard web-platform and resegmented following the HarP. The five most accurate tracers followed the HarP to segment 15 ADNI cases acquired at three time points on both 1.5 T and 3T. Results The agreement among tracers was relatively low with the local protocols (absolute left/right ICC 0.44/0.43) and much higher with the HarP (absolute left/right ICC 0.88/0.89). On the larger set of 15 cases, the HarP agreement within (left/right ICC range: 0.94/0.95 to 0.99/0.99) and among tracers (left/right ICC range: 0.89/0.90) was very high. The volume variance due to different tracers was 0.9% of the total, comparing favorably to variance due to scanner manufacturer (1.2), atrophy rates (3.5), hemispheric asymmetry (3.7), field strength (4.4), and significantly smaller than the variance due to atrophy (33.5%, P < .001), and physiological variability (49.2%, P < .001). Conclusions The HarP has high measurement stability compared with local segmentation protocols, and good reproducibility within and among human tracers. Hippocampi segmented with the HarP can be used as a reference for the qualification of human tracers and automated segmentation algorithms.
Objective – In this paper, the current neuroimaging literature is reviewed with regard to characteristic findings in mild cognitive impairment (MCI). Particular attention is drawn to the possible value of neuroimaging modalities in the prediction and early diagnosis of Alzheimer's disease (AD). Methods – First, the potential contribution of neuroimaging to an early, preclinical diagnosis of degenerative disorders is discussed at the background of our knowledge about the pathogenesis of AD. Second, relevant neuroimaging studies focusing on MCI are explored and summarized. Neuroimaging studies were found through Medline search and by systematically checking through the bibliographies of relevant articles. Results – Structural volumetric magnetic resonance imaging (MRI) and positron emission tomography (PET)/single photon emission tomography (SPECT) are currently the most commonly used neuroimaging modalities in studies focusing on MCI. There were considerable variations in demographical and clinical characteristics across studies. However, significant hippocampal and entorhinal cortex volume reductions were consistently found in subjects with MCI as compared with cognitively unimpaired controls. While hippocampal and entorhinal cortex atrophy in subjects with MCI are also well‐established risk factors for the development of AD, these measures cannot be regarded as being of high predictive value in an individual case. Evidence for other typical neuroimaging changes in MCI is still scarce. In PET and SPECT studies, reduced blood flow and/or glucose metabolism in temporoparietal association areas, posterior cingulate and hippocampus were associated with a higher risk of progressive cognitive decline in MCI. In quantitative electroencephalogram (QEEG), low beta, high theta, low alpha and slowed mean frequency were associated with development of dementia. Conclusions – Existing studies suggest that neuroimaging measures have the potential to become valuable tools in the early diagnosis of AD. To establish their value in routine use, larger studies, preferably with long prospective follow‐up are needed.
Background This study aimed to have international experts converge on a harmonized definition of whole hippocampus boundaries and segmentation procedures, to define standard operating procedures for magnetic resonance (MR)-based manual hippocampal segmentation. Methods The panel received a questionnaire regarding whole hippocampus boundaries and segmentation procedures. Quantitative information was supplied to allow evidence-based answers. A recursive and anonymous Delphi procedure was used to achieve convergence. Significance of agreement among panelists was assessed by exact probability on Fisher’s and binomial tests. Results Agreement was significant on the inclusion of alveus/fimbria (P =.021), whole hippocampal tail (P =.013), medial border of the body according to visible morphology (P =.0006), and on this combined set of features (P =.001). This definition captures 100% of hippocampal tissue, 100% of Alzheimer’s disease-related atrophy, and demonstrated good reliability on preliminary intrarater (0.98) and inter-rater (0.94) estimates. Discussion Consensus was achieved among international experts with respect to hippocampal segmentation using MR resulting in a harmonized segmentation protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.