Hydrogels have captivated the attention of several research and industry segments, including bioengineering, tissue engineering, implantable/wearable sensors and actuators, bioactive agent delivery, food processing, and industrial processes optimization. A common limitation of these systems is their fixed shape. The concept of hydrogel moldability is often assigned to the injectability potential of liquid precursors, and this feature is often lost right after hydrogel formation. Hydrogel modulation is a recent trend that advocates the importance of designing materials with shape fitting ability targeting on-demand responses or defect filling purposes. Here, we present a compliant and cell encapsulation-compatible hydrogel prepared from unmodified natural origin polymers with the ability to undergo extreme sequential shape alterations with high recovery of its mechanical properties. Different fragments of these hydrogels could be bonded together in spatiotemporally controlled shape- and formulation-morphing structures. This material is prepared with affordable off-the-shelf polysaccharides of natural origin using a mild and safe processing strategy based solely on polyelectrolyte complexation followed by an innovative partial coacervate compaction and dehydration step. These unique hydrogels hold potential for multifield industrial and healthcare applications. In particular, they may find application as defect filling agents or highly compliant wound healing patches for cargo release and/or cell delivery for tissue regeneration and cell-based therapies.
Solubilizing agents are widely used to extract poorly soluble compounds from biological matrices. Aqueous solutions of surfactants and hydrotropes are commonly used as solubilizers, however, the underlying mechanism that determines...
The recovery of critical metals from spent lithium‐ion batteries (LIBs) is rapidly growing. Current methods are energy‐intensive and hazardous, while alternative solvent‐based strategies require more studies on their ‘green’ character, metal dissolution mechanism and industrial applicability. Herein, we bridged this gap by studying the effect of dilute HCl solutions in hydroxylated solvents to dissolve Co, Ni and Mn oxides. Ethylene glycol emerged consistently as the most effective solvent, dissolving up to four times more Co and Ni oxides than using aqueous acidic media, attributed to improved chloro‐complex formation and solvent effects. These effects had a significant contribution compared to acid type and concentration. The highest Co dissolution (0.27 M) was achieved in 0.5 M HCl in 25 % (v/v) glycerol in water, using less acid and a significant amount of water compared to other solvent systems, as well as mild temperatures (40 °C). This solvent was applied to dissolve battery cathode material, achieving 100 % dissolution of Co and Mn and 94 % dissolution of Ni, following what was concluded to be a mixed mechanism. These results offer a simple alternative to current leaching processes, reducing acid consumption, enhancing atomic efficiency, and paving the way for optimized industrial hydrometallurgical processes leaning to ‘greener’ strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.