SUMMARYA method to compute guaranteed upper bounds for the energy norm of the exact error in the finite element solution of the Poisson equation is presented. The bounds are guaranteed for any finite element mesh however coarse it may be, not just in the asymptotic regime. The bounds are constructed by employing a subdomain based a posteriori error estimate which yields self-equilibrated residual loads in stars (patches of elements). The proposed approach is an alternative to standard equilibrated residual methods providing sharper bounds. The use of a flux-free error estimator improves the effectivities of the upper bounds for the energy while retaining the certainty of the bounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.