Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids. These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter of 0.2 for the equivalent aqueous gating system. This study shows that ionic liquids are far more effective media for gating the conductance of single molecules than either solid-state three-terminal platforms created using nanolithography, or aqueous media.
Citation for published item:w rqu¡ esEqonz¡ lezD F nd u(tD hF F nd row rdD tFeFuF nd w rtinD F nd ysorioD rFwF nd q r i E u rezD FwF nd xi holsD FtF nd rigginsD FtF nd ge D F nd vowD FtF @PHIQA 9 implifying the ondu t n e pro(les of mole ul r jun tions X the use of the trimethylsilylethynyl moiety s mole uleEgold ont tF9D h lton tr ns tionsFD RP @PAF ppF QQVEQRIF Further information on publisher's website:httpXGGdxFdoiForgGIHFIHQWG PdtQIVPS Publisher's copyright statement:Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
The compounds and complexes 1,4‐C6H4(C≡C‐cyclo‐3‐C4H3S)2 (2), trans‐[Pt(C≡C‐cyclo‐3‐C4H3S)2(PEt3)2] (3), trans‐[Ru(C≡C‐cyclo‐3‐C4H3S)2(dppe)2] (4; dppe=1,2‐bis(diphenylphosphino)ethane) and trans‐[Ru(C≡C‐cyclo‐3‐C4H3S)2{P(OEt)3}4] (5) featuring the 3‐thienyl moiety as a surface contacting group for gold electrodes have been prepared, crystallographically characterised in the case of 3–5 and studied in metal|molecule|metal junctions by using both scanning tunnelling microscope break‐junction (STM‐BJ) and STM‐I(s) methods (measuring the tunnelling current (I) as a function of distance (s)). The compounds exhibit similar conductance profiles, with a low conductance feature being more readily identified by STM‐I(s) methods, and a higher feature by the STM‐BJ method. The lower conductance feature was further characterised by analysis using an unsupervised, automated multi‐parameter vector classification (MPVC) of the conductance traces. The combination of similarly structured HOMOs and non‐resonant tunnelling mechanism accounts for the remarkably similar conductance values across the chemically distinct members of the family 2–5.
A nascent metal–molecule–GNP assembly has been fabricated by immersion of a gold-substrate supported monolayer in a solution of gold nanoparticles (GNPs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.