Alternating current (AC) voltammetric techniques are experimentally powerful as they enable Faradaic current to be isolated from non-Faradaic contributions. To find the best global fit between experimental voltammetric data and simulations based on reaction models requires searching a substantial parameter space at high resolution. In this paper we estimate parameters from purely sinusoidal voltammetry (PSV) experiments, investigating the redox reactions of a surface-confined ferrocene derivative. The advantage of PSV is that a complete experiment can be simulated relatively rapidly, compared to other AC voltammetric techniques. In one example involving thermodynamic dispersion, a PSV parameter inference effort requiring 7,500,000 simulations was completed in 7 hours whereas the same process for our previously used technique, ramped Fourier transform AC voltammetry (ramped FTACV) would have taken four days. Using both synthetic and experimental data with a surface confined diazonium substituted ferrocene derivative, it is shown that the PSV technique can be used to recover the key chemical and physical parameters. By applying techniques from Bayesian inference and Markov chain Monte-Carlo methods, the confidence, distribution and degree of correlation of the recovered parameters was visualised and quantified.
Four non-coding GWAS variants in or near the ADIPOQ gene (rs17300539, rs17366653, rs3821799 and rs56354395) together explain 4% of the variation in circulating adiponectin. The functional basis for this is unknown. We tested the effect of these variants on ADIPOQ transcription, splicing and stability respectively in adipose tissue samples from participants recruited by rs17366653 genotype. Transcripts carrying rs17300539 demonstrated a 17% increase in expression (p = 0.001). Variant rs17366653 was associated with disruption of ADIPOQ splicing leading to a 7 fold increase in levels of a non-functional transcript (p = 0.002). Transcripts carrying rs56354395 demonstrated a 59% decrease in expression (p = <0.0001). No effects of rs3821799 genotype on expression was observed. Association between variation in the ADIPOQ gene and serum adiponectin may arise from effects on mRNA transcription, splicing or stability. These studies illustrate the utility of recruit-by-genotype studies in relevant human tissues in functional interpretation of GWAS signals.
The paper includes a thorough charac-terisation of a technique called Purely Sinusoidal Voltammetry (PSV). This technique is usedto infer reaction parameters about a surface-linked redox process, and the characterisationeffort involves both computational and experimental methods.
This paper explores the impact of pH on the mechanism of reversible disulfide bond (CysS-SCys) reductive breaking and oxidative formation in Escherichia coli hydrogenase maturation factor HypD, a protein which forms a highly stable adsorbed film on a graphite electrode. To achieve this, low frequency (8.96 Hz) Fourier transformed alternating current voltammetric (FTACV) experimental data was used in combination with modelling approaches based on Butler-Volmer theory with a dual polynomial capacitance model, utilizing an automated two-step fitting process conducted within a Bayesian framework. We previously showed that at pH 6.0 the protein data is best modelled by a redox reaction of two separate, stepwise one-electron, one-proton transfers with slightly “crossed” apparent reduction potentials that incorporate electron and proton transfer terms (Eapp20 > Eapp10). Remarkably, rather than collapsing to a concerted two-electron redox reaction at more extreme pH, the same two-stepwise one-electron transfer model with Eapp20 > Eapp10 continues to provide the best fit to FTACV data measured across a proton concentration range from pH 4.0 to pH 9.0. A similar, small level of crossover in reversible potentials is also displayed in overall two-electron transitions in other proteins and enzymes, and this provides access to a small but finite amount of the one electron reduced intermediate state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.