Background In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia).Methods We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400.
BackgroundIn Kinshasa, malaria remains a major public health problem but its spatial epidemiology has not been assessed for decades now. The city’s growth and transformation, as well as recent control measures, call for an update. To identify highly exposed communities and areas where control measures are less critically needed, detailed risk maps are required to target control and optimize resource allocation.MethodsIn 2009 (end of the dry season) and 2011 (end of the rainy season), two cross-sectional surveys were conducted in Kinshasa to determine malaria prevalence, anaemia, history of fever, bed net ownership and use among children 6–59 months. Geo-referenced data for key parameters were mapped at the level of the health area (HA) by means of a geographic information system (GIS).ResultsAmong 7517 children aged 6–59 months from 33 health zones (HZs), 6661 (3319 in 2009 and 3342 in 2011) were tested for both malaria (by Rapid Diagnostic Tests) and anaemia, and 856 (845 in 2009 and 11 in 2011) were tested for anaemia only. Fifteen HZs were sampled in 2009, 25 in 2011, with seven HZs sampled in both surveys. Mean prevalence for malaria and anaemia was 6.4 % (5.6–7.4) and 65.1 % (63.7–66.6) in 2009, and 17.0 % (15.7–18.3) and 64.2 % (62.6–65.9) in 2011. In two HZs sampled in both surveys, malaria prevalence was 14.1 % and 26.8 % in Selembao (peri-urban), in the 2009 dry season and 2011 rainy season respectively, and it was 1.0 % and 0.8 % in Ngiri Ngiri (urban). History of fever during the preceding two weeks was 13.2 % (12.5–14.3) and 22.3 % (20.8–23.4) in 2009 and 2011. Household ownership of at least one insecticide-treated net (ITN) was 78.7 % (77.4–80.0) and 65.0 % (63.7–66.3) at both time points, while use was 57.7 % (56.0–59.9) and 45.0 % (43.6–46.8), respectively.ConclusionsThis study presents the first malaria risk map of Kinshasa, a mega city of roughly 10 million inhabitants and located in a highly endemic malaria zone. Prevalence of malaria, anaemia and reported fever was lower in urban areas, whereas low coverage of ITN and sub-optimal net use were frequent in peri-urban areas.
BackgroundLong-lasting insecticidal nets (LLIN) are a highly effective means for preventing malaria infection and reducing associated morbidity and mortality. Mass free distribution campaigns have been shown to rapidly increase LLIN ownership and use. Around 3.5 million LLINs were distributed free of charge in the Kasaï Occidental Province in the Democratic Republic of Congo (DRC) in September–October 2014, using two different approaches, a fixed delivery strategy and a door-to-door strategy including hang-up activities.MethodsRepeated community-based cross-sectional surveys were conducted 2 months before and six months after the mass distribution. Descriptive statistics were used to measure changes in key malaria household indicators. LLIN ownership and use were compared between delivery strategies. Univariate and multivariate logistic regression analyses were used to identify factors associated with LLIN use before and after the mass distribution. A comparative financial cost analysis between the fixed delivery and door-to-door distribution strategies was carried out from the provider’s perspective.ResultsHousehold ownership of at least one LLIN increased from 39.4% pre-campaign to 91.4% post-campaign and LLIN universal coverage, measured as the proportion of households with at least one LLIN for every two people increased from 4.1 to 41.1%. Population access to LLIN within the household increased from 22.2 to 80.7%, while overall LLIN use increased from 18.0 to 68.3%. Higher LLIN ownership was achieved with the fixed delivery strategy compared with the door-to-door (92.5% [95% CI 90.2–94.4%] versus 85.2% [95% CI 78.5–90.0%]), while distribution strategy did not have a significant impact on LLIN use (69.6% [95% CI 63.1–75.5%] versus 65.7% [95% CI 52.7–76.7%]). Malaria prevalence among children aged 6–59 months was 44.8% post-campaign. Living in a household with sufficient numbers of LLIN to cover all members was the strongest determinant of LLIN use. The total financial cost per LLIN distributed was 6.58 USD for the fixed distribution strategy and 6.61 USD for the door-to-door strategy.ConclusionsThe mass distribution campaign was effective for rapidly increasing LLIN ownership and use. These gains need to be sustained for long-term reduction in malaria burden. The fixed delivery strategy achieved a higher LLIN coverage at lower delivery cost compared with the door-to-door strategy and seems to be a better distribution strategy in the context of the present study setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.