This study explores the efficacy of utilizing a novel ground penetrating radar (GPR) acquisition platform and data analysis methods to quantify peanut yield for breeding selection, agronomic research, and producer management and harvest applications. Sixty plots comprising different peanut market types were scanned with a multichannel, air-launched GPR antenna. Image thresholding analysis was performed on 3D GPR data from four of the channels to extract features that were correlated to peanut yield with the objective of developing a noninvasive high-throughput peanut phenotyping and yield-monitoring methodology. Plot-level GPR data were summarized using mean, standard deviation, sum, and the number of nonzero values (counts) below or above different percentile threshold values. Best results were obtained for data below the percentile threshold for mean, standard deviation and sum. Data both below and above the percentile threshold generated good correlations for count. Correlating individual GPR features to yield generated correlations of up to 39% explained variability, while combining GPR features in multiple linear regression models generated up to 51% explained variability. The correlations increased when regression models were developed separately for each peanut type. This research demonstrates that a systematic search of thresholding range, analysis window size, and data summary statistics is necessary for successful application of this type of analysis. The results also establish that thresholding analysis of GPR data is an appropriate methodology for noninvasive assessment of peanut yield, which could be further developed for high-throughput phenotyping and yield-monitoring, adding a new sensor and new capabilities to the growing set of digital agriculture technologies.
Cassava as a world food security crop still suffers from an inadequate means to measure early storage root bulking (ESRB), a trait that describes early maturity and a key characteristic of improved cassava varieties. The objective of this study is to evaluate the capability of ground penetrating radar (GPR) for non-destructive assessment of cassava root biomass. GPR was evaluated for this purpose in a field trial conducted in Ibadan, Nigeria. Different methods of processing the GPR radargram were tested, which included time slicing the radargram below the antenna surface in order to reduce ground clutter; to remove coherent sub-horizontal reflected energy; and having the diffracted energy tail collapsed into representative point of origin. GPR features were then extracted using Discrete Fourier Transformation (DFT), and Bayesian Ridge Regression (BRR) models were developed considering one, two and three-way interactions. Prediction accuracies based on Pearson correlation coefficient (r) and coefficient of determination (R2) were estimated by the linear regression of the predicted and observed root biomass. A simple model without interaction produced the best prediction accuracy of r = 0.64 and R2 = 0.41. Our results demonstrate that root biomass can be predicted using GPR and it is expected that the technology will be adopted by cassava breeding programs for selecting early stage root bulking during the crop growth season as a novel method to dramatically increase crop yield.
Ground-penetrating radar has emerged as a prominent non-destructive evaluation tool for the study of inaccessible subsurface elements of cultural heritage structures. Often of central interest is the desire to image the remains of a pre-existing historic structure that is located directly beneath a more recently built one. The interpretation of GPR images in such cases is usually difficult due to ambiguities caused by the presence of pervasive clutter, environmental noise, and overlapping target signatures. Sites with abundant ground truth allow for more confident interpretations and serve as a useful testbed to assist similar studies at other places, where little or no ground truth is available. This study reports GPR interpretations of structures belonging to the 19th century Citadel beneath the main prison cellhouse at Alcatraz. At this site, lidar scans, direct observations, and historical documents are available to facilitate identification of radar target signatures. A general interpretation of the acquired radargrams is made in this paper, while the companion paper presents more advanced analysis of target signatures based on curvelet image processing. This study points to the development of a radar facies classification scheme that is specific to cultural heritage investigations.
We deployed field-based high-throughput phenotyping (HTP) techniques to acquire trait data for a subset of a peanut chromosome segment substitution line (CSSL) population. Sensors mounted on an unmanned aerial vehicle (UAV) were used to derive various vegetative indices as well as canopy temperatures. A combination of aerial imaging and manual scoring showed that CSSL 100, CSSL 84, CSSL 111, and CSSL 15 had remarkably low tomato spotted wilt virus (TSWV) incidence, a devastating disease in South Georgia, USA. The four lines also performed well under leaf spot pressure. The vegetative indices showed strong correlations of up to 0.94 with visual disease scores, indicating that aerial phenotyping is a reliable way of selecting under disease pressure. Since the yield components of peanut are below the soil surface, we deployed ground penetrating radar (GPR) technology to detect pods non-destructively. Moderate correlations of up to 0.5 between pod weight and data acquired from GPR signals were observed. Both the manually acquired pod data and GPR variables highlighted the three lines, CSSL 84, CSSL 100, and CSSL 111, as the best-performing lines, with pod weights comparable to the cultivated check Tifguard. Through the combined application of manual and HTP techniques, this study reinforces the premise that chromosome segments from peanut wild relatives may be a potential source of valuable agronomic traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.