ROMK channels play a key role in overall K balance by controlling K secretion across the apical membrane of mammalian cortical collecting tubule. In contrast to the family of strong inward rectifiers (IRKs), ROMK channels are markedly sensitive to intracellular pH. Using Xenopus oocytes, we have confirmed this pH sensitivity at both the single-channel and whole cell level. Reduction of oocyte pH from 6.8 to 6.4 (using a permeant acetate buffer) reduced channel open probability from 0.76 ± 0.02 to near zero ( n = 8), without altering single-channel conductance. This was due to the appearance of a long-lived closed state at low internal pH. We have confirmed that a lysine residue (K61 on ROMK2; K80 on ROMK1), NH2 terminal to the first putative transmembrane segment (M1), is primarily responsible for conferring a steep pH sensitivity to ROMK (B. Fakler, J. Schultz, J. Yang, U. Schulte, U. Bråandle, H. P. Zenner, L. Y. Jan, and J. P. Ruppersberg. EMBO J. 15: 4093–4099, 1996). However, the apparent p K a of ROMK also depends on another residue in a highly conserved, mildly hydrophobic area: T51 on ROMK2 (T70 on ROMK1). Replacing this neutral threonine (T51) with a negatively charged glutamate shifted the apparent p K a for inward conductance from 6.5 ± 0.01 ( n = 8, wild type) to 7.0 ± 0.02 ( n = 5, T51E). On the other hand, replacing T51 with a positively charged lysine shifted the apparent p K a in the opposite direction, from 6.5 ± 0.01 ( n = 8, wild type) to 6.0 ± 0.02 ( n = 9, T51K). The opposite effects of the glutamate and lysine substitutions at position 51 (ROMK2) are consistent with a model in which T51 is physically close to K61 and alters either the local pH or the apparent p K a via an electrostatic mechanism. In addition to its effects on pH sensitivity, the mutation T51E also decreased single-channel conductance from 34.0 ± 1.0 pS ( n = 8, wild type) to 17.4 ± 1 pS ( n = 9, T51E), reversed the voltage gating of the channel, and significantly increased open-channel noise. These effects on single-channel currents suggest that the T51 residue, located in a mildly hydrophobic area of ROMK2, also interacts with the hydrophobic region of the permeation pathway.
High-conductance (maxi) K channels in the apical membrane of rat and rabbit cortical collecting tubules (CCT) were studied using the patch-clamp technique. Principal cells (PC) and intercalated cells (IC) were distinguished with Hoffman modulation optics in split-open tubules. IC were further identified by staining tubules with the fluorescent mitochondrial dye, rhodamine 123. Maxi-K channels were distinguished by their high conductance (greater than 80 pS) and voltage-dependent kinetics. In CCT of rats on a low-Na diet, maxi K channels were observed in 11% of the cell-attached patches on PC and 79% of patches on IC. In rats on a normal diet, the channels were seen in 23 and 79% of patches on PC and IC, respectively. In the rabbit CCT, maxi K channels were observed in 12% (4 of 32) of the patches on PC and 82% (122 of 148) of the patches on IC. The greater abundance of channels in IC was confirmed in rat CCT using the whole-cell clamp technique. Current through the maxi K channels (IK) was measured as the tetraethylammonium (TEA)-sensitive (2.5 mM) outward current in cells equilibrated with 115 mM K and 10(-5) M Ca2+ in the pipette solution. When the cell was clamped to an internal potential of +40 mV, the average IK per cell was -4 +/- 5 pA in PC and 290 +/- 90 pA in IC. Lowering cytoplasmic Ca2+ from 10(-5) M to 10(-7) M reduced IK to 32 +/- 21 pA. Neither single Na channels nor amiloride-sensitive whole-cell currents were seen in IC. Finally, maxi K channels could be activated by pipette suction (10-40 cm H2O) in either cell-attached or inside-out patches on IC from rabbit CCT. This mechanosensitivity was observed even after chelation of free Ca2+ with ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) in the pipette or the bath solutions, implying that stretch activation of these channels was not mediated by increased Ca2+ entry into the cell. The IC maxi K channel may play a role in cell volume regulation or in K secretion during elevation of luminal hydrostatic pressure.
The Kir inward rectifying potassium channels have a broad tissue distribution and are implicated in a variety of functional roles. At least seven classes (Kir1 – Kir7) of structurally related inward rectifier potassium channels are known, and there are no selective small molecule tools to study their function. In an effort to develop selective Kir2.1 inhibitors, we performed a high-throughput screen (HTS) of more than 300,000 small molecules within the MLPCN for modulators of Kir2.1 function. Here we report one potent Kir2.1 inhibitor, ML133, which inhibits Kir2.1 with IC50 of 1.8 μM at pH 7.4 and 290 nM at pH 8.5, but exhibits little selectivity against other members of Kir2.x family channels. However, ML133 has no effect on Kir1.1 (IC50 > 300 μM), and displays weak activity for Kir4.1 (76 μM) and Kir7.1 (33 μM), making ML133 the most selective small molecule inhibitor of the Kir family reported to date. Due to the high homology within the Kir family, the channels share a common design of a pore region flanked by two transmembrane domains, identification of site(s) critical for isoform specificity would be an important basis for future development of more specific and potent Kir inhibitors. Using chimeric channels between Kir2.1 and Kir1.1 and site-directed mutagenesis, we have identified D172 and I176 within M2 segment of Kir2.1 as molecular determinants critical for the potency of ML133 mediated inhibition. Double mutation of the corresponding residues of Kir1.1 to those of Kir2.1 (N171D and C175I) transplants ML133 inhibition to Kir1.1. Together, the combination of a potent, Kir2 family selective inhibitor and identification of molecular determinants for the specificity provides both a tool and a model system to enable further mechanistic studies of modulation of Kir2 inward rectifier potassium channels.
The structural domains contributing to ion permeation and selectivity in K channels were examined in inward-rectifier K+ channels ROMK2 (Kir1.1b), IRK1 (Kir2.1), and their chimeras using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode with different permeant cations in the pipette. For inward K+ conduction, replacing the extracellular loop of ROMK2 with that of IRK1 increased single-channel conductance by 25 pS (from 39 to 63 pS), whereas replacing the COOH terminus of ROMK2 with that of IRK1 decreased conductance by 16 pS (from 39 to 22 pS). These effects were additive and independent of the origin of the NH2 terminus or transmembrane domains, suggesting that the two domains form two resistors in series. The larger conductance of the extracellular loop of IRK1 was attributable to a single amino acid difference (Thr versus Val) at the 3P position, three residues in front of the GYG motif. Permeability sequences for the conducted ions were similar for the two channels: Tl+ > K+ > Rb+ > NH4 +. The ion selectivity sequence for ROMK2 based on conductance ratios was NH4 + (1.6) > K+ (1) > Tl+ (0.5) > Rb+ (0.4). For IRK1, the sequence was K+ (1) > Tl+ (0.8) > NH4 + (0.6) >> Rb+ (0.1). The difference in the NH4 +/ K+ conductance (1.6) and permeability (0.09) ratios can be explained if NH4 + binds with lower affinity than K+ to sites within the pore. The relatively low conductances of NH4 + and Rb+ through IRK1 were again attributable to the 3P position within the P region. Site-directed mutagenesis showed that the IRK1 selectivity pattern required either Thr or Ser at this position. In contrast, the COOH-terminal domain conferred the relatively high Tl+ conductance in IRK1. We propose that the P-region and the COOH terminus contribute independently to the conductance and selectivity properties of the pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.