Introduction Several studies suggest that near-IR imaging methods at wavelengths longer than 1,300nm have great potential for caries detection. In this study, the diagnostic performance of both near-IR transillumination and near-IR reflectance was assessed on teeth scheduled for extraction due to orthodontic treatment (n = 109 teeth on 40 test subjects). Methods Three intra-oral near-IR imaging probes were fabricated for the acquisition of in vivo images using a high definition InGaAs camera and near-IR broadband light sources. Two transillumination probes provided occlusal and approximal images using 1,300nm light which manifests the highest transparency in enamel. A third reflectance probe utilized cross-polarization and operated at wavelengths greater than 1,500nm where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. Teeth were collected after extraction and sectioned and examined with polarized light microscopy and microradiography which served as the gold standard. In addition, radiographs were taken of the teeth and the diagnostic performance of near-IR imaging was compared with radiography. Results Near-IR imaging was significantly more sensitive (P < 0.05) than radiography for the detection of lesions on both occlusal and proximal surfaces. Conclusion Near-IR imaging methods are ideally suited for screening all tooth surfaces for carious lesions.
Introduction Studies have shown that cross-polarization optical coherence tomography (CP-OCT) can be used to image the internal structure of carious lesions in vivo. The objective of this study was to show that CP-OCT can be used to monitor changes in the internal structure of early active carious lesions on smooth surfaces during non-surgical intervention with fluoride. Methods Lesions on the smooth surfaces of teeth were imaged using CP-OCT on 17 test subjects. Lesion structural changes were monitored during fluoride varnish application at 6-week intervals for 30 weeks. The lesion depth (Ld), integrated reflectivity (ΔR), and surface zone thickness (Sz) were monitored. Results A distinct transparent surface zone that may be indicative of lesion arrestment was visible in CP-OCT images on 62/63 lesions before application of fluoride varnish. The lesion depth and internal structure were resolved for all the lesions. The overall change in the mean values for Ld, ΔR, and Sz for all the lesions was minimal and was not significant during the study (P > 0.05). Only 5/63 lesions manifested a significant increase in Sz during intervention. Conclusion Even though it appears that most of the lesions manifested little change with fluoride varnish application in the 30 weeks of the study, CP-OCT was able to measure the depth and internal structure of all the lesions including the thickness of the important transparent surface zone located at the surface of the lesions, indicating that CP-OCT is ideally suited for monitoring lesion severity in vivo.
Previous studies have demonstrated the utility of near infrared (NIR) imaging for caries detection employing transillumination and reflectance imaging geometries. Three intra-oral NIR imaging probes were fabricated for the acquisition of in vivo, real time videos using a high definition InGaAs SWIR camera and near-IR broadband light sources. Two transillumination probes provide occlusal and interproximal images using 1300-nm light where water absorption is low and enamel manifests the highest transparency. A third reflectance probe utilizes cross polarization and operates at >1500-nm, where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. These probes are being used in an ongoing clinical study to assess the diagnostic performance of NIR imaging for the detection of caries lesions in teeth scheduled for extraction for orthodontic reasons.
Laser based methods are well suited for automation and can be used to selectively remove dental caries to minimize the loss of healthy tissues and render the underlying enamel more resistant to acid dissolution. The purpose of this study was to determine which imaging methods are best suited for image-guided ablation of natural non-cavitated carious lesions on occlusal surfaces. Multiple caries imaging methods were compared including near-IR and visible reflectance and quantitative light fluorescence (QLF). In order for image-guided laser ablation to be feasible, chemical and physical modification of tooth surfaces due to laser irradiation cannot greatly reduce the contrast between sound and demineralized dental hard tissues. Sound and demineralized surfaces of 48 extracted human molar teeth with non-cavitated lesions were examined. Images were acquired before and after laser irradiation using visible and near-IR reflectance and QLF at several wavelengths. Polarization sensitive-optical coherence tomography was used to confirm that lesions were present. The highest contrast was attained at 1460-nm and 1500–1700-nm, wavelengths coincident with higher water absorption. The reflectance did not decrease significantly after laser irradiation for those wavelengths.
Abstract. Previous studies have shown that near-infrared (NIR) reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum NIR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using NIR reflectance and NIR transillumination at wavelengths of 1300, 1460, and 1500 to 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography (OCT) for comparison. The highest contrast for NIR reflectance was at 1460 nm and 1500 to 1700 nm. These NIR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either copolarization or cross-polarization OCT images. The wavelength region between 1500 and 1700 nm yielded the highest contrast of lesions under sealants for NIR reflectance measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.