Microwave-induced thermal acoustic imaging (TAI) is a promising early breast cancer detection technique, which combines the advantages of microwave stimulation and ultrasound imaging and offers a high imaging contrast, as well as high spatial resolution at the same time. A new multifrequency microwave-induced thermal acoustic imaging scheme for early breast cancer detection is proposed in this paper. Significantly more information about the human breast can be gathered using multiple frequency microwave stimulation. A multifrequency adaptive and robust technique (MART) is presented for image formation. Due to its data-adaptive nature, MART can achieve better resolution and better interference rejection capability than its data-independent counterparts, such as the delay-and-sum method. The effectiveness of this procedure is shown by several numerical examples based on 2-D breast models. The finite-difference time-domain method is used to simulate the electromagnetic field distribution, the absorbed microwave energy density, and the thermal acoustic field in the breast model.
The finite-difference time-domain (FDTD) method has been widely used to simulate the electromagnetic wave propagation in biological tissues. The Cole-Cole model is a formulation which can describe many types of biological tissues accurately over a very wide frequency band. However, the implementation of the Cole-Cole model using the FDTD method is difficult because of the fractional order differentiators in the model. In this letter, a new FDTD formulation is presented for the modeling of electromagnetic wave propagation in dispersive biological tissues with the Cole-Cole model. The -transform is used to represent the frequency dependent dielectric properties. The fractional order differentiators in the Cole-Cole model is approximated by a polynomial. The coefficients of the polynomial are found using a least-squares fitting method.
Index Terms-Cole-Cole model, finite-difference time-domain (FDTD) methods, least-squares (LS) fitting method, -transform.
It is shown that by applying spatial frequency dependent phase compensation in an optical heterodyne process, a variable RF delay line can be synthesized over a prescribed frequency band. Experimental results which demonstrate the performance of the delay line with regard to both maximum delay and resolution over a broad bandwidth are presented. Additionally, a spatially integrated optical system is proposed for control of phased array antennas. The integrated system provides mechanical stability, essentially eliminates the drift problems associated with free-space optical systems, and can provide bighpacking density. The approach uses a class of spatial light modulator known as a deformable mirror device and leads to a steerable arbitrary antenna radiation pattern of the true time delay type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.