The accuracy and correct interpretation of optical parameters of seawater depend on the complete information osn the interactions between seawater components and the light field. Among components influencing the radiative transfer, the droplets of oil can cause overor underestimation of modelled and measured optical quantities, especially in closed seas and coastal zones. Oil content in the Baltic Sea varies from several ppb in the open sea to several ppm in estuaries or ship routes. Oil droplets become additional absorbents and attenuators in seawater causing changes in apparent optical properties. These changes can potentially enable remote optical detection of oil-in-water emulsion in visible bands. To demonstrate potential possibilities of such optical remote sensing, a study of inherent optical properties of two types of crude oil emulsion was conducted, i.e. high absorptive and strongly scattering Romashkino, and low absorptive and weakly scattering Petrobaltic. First, the calculations of spectral absorption and scattering coefficients as well as scattering phase functions for oil emulsions were performed on the basis of Lorentz-Mie theory for two different oil droplets size distributions corresponding to a fresh and 14-days aged emulsions. Next, radiative transfer theory was applied to evaluate the contribution of oil emulsion to remote sensing reflectance R rs (λ). Presented system for radiative transfer simulation is based on Monte Carlo code and it involves optical tracing of virtual photons. The model was validated by comparison of R rs (λ) simulated for natural seawater to R rs (λ) from in situ measurements in Baltic Sea. The deviation did not exceed 10% for central visible wavelengths and stayed within 5% for short and long wavelengths. The light Petrobaltic crude oil in concentration of 1 ppm causes typically a 10-30% increase of R rs while the heavy Romashkino reduces R rs for 30-50%.
Oil poses a major threat to marine ecosystems. This work describes a set of studies focused on introducing an efficient method for the identification of oil in the form of oil emulsions through fluorescence spectra analyses. Hence the concept of classification of oil pollution in seawater based on fluorescence spectroscopy using a high sensitive fluorimeter [1] suitable for laboratory and in situ measurements is introduced. We consider that this approach, in the future, will make it possible to collect specific fluorescence information allowing us to build a base of the oil standards. Here we examined excitation-emission fluorescence spectra (EEMs) of water containing oil-in-water emulsion prepared artificially under laboratory conditions. Water polluted with oil-in-water emulsion was studied with the objective to estimate differences in three-dimensional fluorescence spectra. Studies included various types of oils and oil concentrations. Essential differences in fluorescence spectra for various oils are indicated.
The downwelling light in seawater is shaped by natural seawater constituents as well as by some external substances which can occur locally and temporally. In this study we focused on dispersed oil droplets which can be found in seawater after an oil spill or in the consequence of intensive shipping, oil extraction and transportation. We applied our modified radiative transfer model based on Monte Carlo code to evaluate the magnitude of potential influence of dispersed oil droplets on the downwelling irradiance and the depth of the euphotic zone. Our model was validated on the basis of in situ measurements for natural (unpolluted) seawater in the Southern Baltic Sea, resulting in less than 5% uncertainty. The optical properties of dispersed Petrobaltic crude oil were calculated on the basis of Mie theory and involved into radiative transfer model. We found that the changes in downwelling light caused by dispersed oil depend on several factors such as oil droplet concentration, size distribution, and the penetration depth (i.e. vertical range of oil droplets occurrence below sea surface). Petrobaltic oil droplets of submicron sizes and penetration depth of 5 m showed a potentially detectable reduction in the depth of the euphotic zone of 5.5% at the concentration of only 10 ppb. Micrometer-sized droplets needed 10 times higher concentration to give a similar effect. Our radiative transfer model provided data to analyse and discuss the influence of each factor separately. This study contributes to the understanding of the change in visible light penetration in seawater affected by dispersed oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.