This study aims to elucidate the effect of heating on the local atomic arrangements, structure, phase transformation, and mechanical properties of synthesized calcium–silicate–hydrate (C–S–H). The alteration in the atomic arrangement of the synthesized C–S–H (Ca/Si =0.8) and the formation of crystalline phases that occurred in three distinct transformation stages of dehydration (105°C–200°C), decomposition (300°C–600°C), and recrystallization (700°C–1000°C) were investigated via powder X‐ray diffraction, 29Si nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. Further, the deformation of the local atomic bonding environment and variations in mechanical properties during the three stages were assessed via pair distribution function analysis based on in‐situ total X‐ray scattering. The results revealed that the C–S–H paste before heating exhibited a lower elastic modulus in real space than that in the reciprocal space in the initial loading stage because water molecules acted as a lubricant in the interlayer. At the dehydration stage, the strain as a function of external loading exhibited irregular deformation owing to the formation of additional pores induced by the evaporation of free moisture. At the decomposition stage, the structural deformation of the main d‐spacing (d ≈ 3.0 Å) was similar to that of the real space before the propagation of microcracks. At the recrystallization stage, the elastic modulus increased to 48 GPa owing to the thermal phase transformation of C–S–H to crystalline β‐wollastonite. The results provide direct experimental evidence of the microstructural and nanostructural deformation behavior of C–S–H pastes after exposure to high temperature under external loading.
A polymer-modified cement mortar (PCM) is widely used as a repair material for reinforced concrete (RC) structures owing to its excellent strength and durability. However, considering the maintenance of the RC structures and the use period of the structures, the change in the physical properties of the PCM should be evaluated when exposed to various high-temperature environments, such as fires. In this study, the degradation of the mechanical properties (compressive strength and modulus of elasticity), thermal decomposition of the PCM in various high-temperature environments, and the change in the pore structure of the PCM after exposure to high temperatures were quantitatively investigated. A mechanical property evaluation of PCM was performed under three heating conditions: (i) heating in a compression tester, (ii) heating the specimen in an oven to a predetermined temperature and then moving it to a compression tester preheated to the same temperature, and (iii) cooling to room temperature after heating. In the experiment, a PCM specimen was prepared by changing the polymer–cement ratio (polymer content) of ethylene-vinyl acetate (EVA), the most commonly used polymer, to perform a high-temperature sectional test from 200 to 800 °C. In addition, to investigate the change in the PCM mechanical properties in the high-temperature region, in terms of the pyrolysis of EVA, the porosity change and mass change were examined using thermal analysis and mercury intrusion porosimetry. Before heating, the compressive strength of the PCM increased with the EVA content up to 10 % of the polymer–cement ratio. Under the cooling conditions after heating up to 200 °C, the mechanical performance of the PCM was restored, whereas the degradation of the mechanical properties of the PCM without cooling was more pronounced. Furthermore, the mass loss, heat flow, and the total porosity of the PCM increased as the EVA content increased, which is correlated with the degradation of the mechanical properties of the PCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.