In recent years, nano-reinforcing technologies for cementitious materials have attracted considerable interest as a viable solution for compensating the poor cracking resistance of these materials. In this study, for the first time, titanium nanotubes (TNTs) were incorporated in cement pastes and their effect on the mechanical properties, microstructure, and early-age hydration kinetics was investigated. Experimental results showed that both compressive (~12%) and flexural strength (~23%) were enhanced with the addition of 0.5 wt.% of TNTs relative to plain cement paste at 28 days of curing. Moreover, it was found that, while TNTs accelerated the hydration kinetics of the pure cement clinker phase (C3S) in the early age of the reaction (within 24 h), there was no significant effect from adding TNTs on the hydration of ordinary Portland cement. TNTs appeared to compress the microstructure by filling the cement paste pore of sizes ranging from 10 to 100 nm. Furthermore, it could be clearly observed that the TNTs bridged the microcracks of cement paste. These results suggested that TNTs could be a great potential candidate since nano-reinforcing agents complement the shortcomings of cementitious materials.
Rice is a staple for a large population around the world. Drying and tempering of rice, a known process overtime is still done improperly due to energy cost, know-how and other factors. This causes huge loses in quantity and quality. Different aspects of drying were investigated to optimize the process. Moisture contents and drying rate were determined. Japonica rice was treated using the parboiling process. The rice was dried and tempered at different periods and temperatures using sealed plastic bags. Various quality parameters were examined. Duncan multiple test and one way ANOVA were used to analyze data in SAS software. Moisture content after parboiling was increased to 28.3% from the initial 14.3%. A significant improvement in milling yield from 68.71% of a control to 73.4% of the optimal was recorded. Duncan multiple test and ANOVA analyses showed a possibility in tempering time reduction. Findings from this study provides more information on drying of parboiled Japonica rice and will enable optimization of the process.
Plutonium has potential applications in energy production in well-controlled nuclear reactors. Since nuclear power plants have great merit as environmentally friendly energy sources with a recyclable system, a recycling system for extracting Pu from spent fuels using suitable extractants has been proposed. Pu leakage is a potential environmental hazard, hence the need for chemical sensor development. Both extractants and chemical sensors involve metal–ligand interactions and to develop efficient extractants and chemical sensors, structural information about Pu ligands must be obtained by quantum calculations. Herein, six representative nitrogen tridentate ligands were introduced, and their binding stabilities were evaluated. The tridentate L6, which contains tri-pyridine chelate with benzene connectors, showed the highest binding energies for Pu(IV) and PuO2(VI) in water. Analysis based on the quantum theory of atoms in molecular analysis, including natural population analysis and electron density studies, provided insight into the bonding characteristics for each structure. We propose that differences in ionic bonding characteristics account for the Pu-ligand stability differences. These results form a basis for designing novel extractants and organic Pu sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.