To alleviate eutrophication in coastal waters, reducing nitrogen (N) discharge from wastewater treatment plants (WWTPs) by upgrading conventional activated sludge (CAS) to biological nutrient removal (BNR) processes is commonplace. However, despite numerous upgrades and successful reduction of N discharge from WWTPs, eutrophication problems persist. These unexpected observations raise the possibility that some aspects of BNR yield environmental responses as yet overlooked. Here, we report that one of the most common BNR processes, predenitrification, is prone to the production of low-molecular-weight dissolved organic N (LMW-DON), which is highly bioavailable and stimulates phytoplankton blooms. We found that in predenitrification BNR, LMW-DON is released during the post-aerobic step following the preanoxic step, which does not occur in CAS. Consequently, predenitrification systems produced larger amount of LMW-DON than CAS. In estuarine bioassays, predenitrification BNR effluents produced more phytoplankton biomass than CAS effluents despite lower N concentrations. This was also supported by stronger correlations found between phytoplankton biomass and LMW-DON than other N forms. These findings suggest that WWTPs upgraded to predenitrification BNR reduce inorganic N discharge but introduce larger quantities of potent LMW-DON into coastal systems. We suggest reassessing the N-removal strategy for WWTPs to minimize the eutrophication effects of effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.