Objectives
This study sought to provide contemporary data from a multi‐institution with respect to DNA‐repair genes (DRGs) status and its impact on effects of platinum‐based chemotherapy in treatment‐emergent neuroendocrine prostate cancer (t‐NEPC), for which little data exist.
Patients and Methods
All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression‐free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1.
Results
Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair‐deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19–0.93), and the HR for death was 0.65 (95% CI: 0.24–1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%).
Conclusion
The DRGs status is therapeutically meaningful in t‐NEPC. Given the potential responses to platinum‐based chemotherapy, our findings support the clinical use of NGS in t‐NEPC patients to identify DRGs aberrations.
Epididymal specific proteins play a crucial role in sperm maturation. Some of the post-translational modified proteins are transported from the caput to the cauda of the epididymis through exosomes which regulate the function of sperm in cauda epididymis. Rat beta-galactosidase-1-like protein 4 (GLB1L4) expressed specifically in the caput epididymis, localizes on the sperm; however, the regulatory ways in which GLB1L4 protein interacts with sperm to maintain sperm function are unclear. In this study, knockdown of rat GLB1L4 could inhibit in vitro capacitation of sperm in cauda epididymis and reduce the fertility of the male rats by injection of special lentivirus-shRNA into caput epididymis. Moreover, a considerable proportion of GLB1L4 proteins from rat caput epididymis were loaded on exosomes. The exosomes loaded GLB1L4 from in vitro primary rat caput epididymal epithelial cells could bind with spermatozoa in cauda epididymis. Further, the palmitoylation status of cysteine residues at the 12th and 15th sites of the protein molecule could significantly affect cellular localization of GLB1L4 protein. It was identified that most of GLB1L4 was palmitoylated in the presence of exosomes from primary caput epididymal cells and the level of palmitoylated GLB1L4 in the exosomes could be inhibited by 2-bromopalmitate (2-BP). These results suggested that the palmitoylated GLB1L4 from rat caput epididymis could be transported to the cauda epididymis to regulate the sperm function by exosomes.
Chemical and Pharmaceutical Bulletin Advance PublicationmTOR is an effective anti-tumor drug target. Several mTOR kinase inhibitors have entered clinical research, but there are still challenges of potential toxicity. As a new type of targeted drug, proteolysis targeting chimeras (PROTACs) have features of low dosage and low toxicity. However, this approach has been rarely reported to involve mTOR degradation. In this study, the mTOR kinase inhibitor MLN0128 was used as the ligand to the protein of interest and conjugated with pomalidomide by diverse intermediate linkage chains. Several potential small molecule PROTACs for the degradation of mTOR were designed and synthesized. PROTAC compounds exhibited mTOR inhibitory activity and suppressed MCF-7 cell proliferation. The representative compound P1 could inhibit the expression of mTOR downstream proteins and the growth of cancer cells by inducing autophagy but not affecting the cell cycle and not inducing apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.