BackgroundThe Amazon represents an area of 61% of Brazilian territory and is undergoing major changes resulting from disorderly economic development, especially the advance of agribusiness. Composition of the atmosphere is controlled by several natural and anthropogenic processes, and emission from biomass burning is one with the major impact on human health. The aim of this study was to evaluate genotoxic potential of air pollutants generated by biomass burning through micronucleus assay in exfoliated buccal cells of schoolchildren in the Brazilian Amazon region.MethodsThe study was conducted during the dry seasons in two regions of the Brazilian Amazon. The assay was carried out on buccal epithelial cells of 574 schoolchildren between 6-16 years old.ResultsThe results show a significant difference between micronucleus frequencies in children exposed to biomass burning compared to those in a control area.ConclusionsThe present study demonstrated that in situ biomonitoring using a sensitive and low cost assay (buccal micronucleus assay) may be an important tool for monitoring air quality in remote regions. It is difficult to attribute the increase in micronuclei frequency observed in our study to any specific toxic element integrated in the particulate matters. However, the contribution of the present study lies in the evidence that increased exposure to fine particulate matter generates an increased micronuclei frequency in oral epithelial cells of schoolchildren.
The concentration 0.2 μg/μL of M. oleifera seed extract recommended to treat water for humans did not pose a risk to human health. The mutagenicity detected at concentrations higher than 0.4 μg/μL was not due to WSMoL, lectin isolated from extract.
Environmental and occupational exposure to benzene from fuels is a major cause for concern for national and international authorities, as benzene is a known carcinogen in humans and there is no safe limit for exposure to carcinogens. The objective of this study was to evaluate the genotoxic effects of chronic occupational exposure to benzene among two groups of workers: filling station workers (Group I) and security guards working at vehicles entrances (Group II), both on the same busy highway in Rio de Janeiro, Brazil. Sociodemographic data on the workers were evaluated; the concentration of benzene/toluene (B/T) in atmospheric air and individual trans,trans-muconic acid (ttMA) and S-phenylmercapturic acid (S-PMA) were measured; oxidative stress was analyzed by catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), thiol groups (THIOL) and malondialdehyde (MDA); genotoxicity was measured by metaphases with chromosomal abnormalities (MCA) and nuclear abnormalities, comet assay using the enzyme formamidopyrimidine DNA glycosylase (C-FPG), and methylation of repetitive element LINE-1, CDKN2B and KLF6 genes. Eighty-six workers participated: 51 from Group I and 35 from Group II. The B/T ratio was similar for both groups, but Group I had greater oscillation of benzene concentrations because of their work activities. No differences in ttMA and S-PMA, and no clinical changes were found between both groups, but linearity was observed between leukocyte count and ttMA; and 15% of workers had leukocyte counts less than 4.5 × 109 cells L−1, demanding close worker’s attention. No differences were observed between the two groups for THIOL, MDA, MCA, or nuclear abnormalities. A multiple linear relationship was obtained for the biomarkers MCA and C-FPG. A significant correlation was found between length of time in current job and the biomarkers C-FPG, MCA, GST, and MDA. Although both populations had chronic exposure to benzene, the filling station workers were exposed to higher concentrations of benzene during their work activities, indicating an increased risk of DNA damage.
Resumo Introdução: a avaliação de uma exposição mensura sua intensidade, frequência e duração, podendo detectar danos precoces que, se ignorados, podem evoluir para um quadro nocivo. Nos campos da saúde ambiental e ocupacional, os biomarcadores de genotoxicidade tem sido largamente utilizados para essa avaliação. Objetivo: identificar, descrever e discutir os principais bioindicadores de genotoxicidade e seu uso conjunto com técnicas de avaliação de expressão gênica em estudos de exposição ocupacional ao benzeno em postos de revenda de combustíveis (PRC). Métodos: revisão bibliográfica de trabalhos publicados entre 1995 e 2015. Resultados: as técnicas identificadas foram: ensaio cometa, estresse oxidativo, micronúcleos, aberrações cromossômicas, polimorfismos, adutos de DNA e proteínas, fatores epigenéticos e expressão gênica. Foi observado que testes de danos genéticos e epigenéticos são utilizados em frentistas de PRC que participam de programas de saúde do trabalhador ou de pesquisas, embora um baixo número de publicações sobre o tema tenha sido identificado. Esse fato talvez possa ser explicado pelos poucos países onde a profissão persiste e pelas limitações para o desenvolvimento de pesquisas nesses países. Conclusão: os bioindicadores de genotoxicidade e as técnicas de expressão gênica são úteis na detecção de dano precoce desta exposição ocupacional e devem ser avaliados em conjunto.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.