Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.
The leafhoppers, planthoppers and their allies (collectively known as the Auchenorrhyncha) are presented as a group of insects that are highly appropriate for studying grassland ecology and conservation, evaluating the conservation status of sites and monitoring environmental and habitat change. Semi-natural grasslands typically support dense populations and a wide range of species with diverse ecological strategies. Their numerical dominance in many grasslands means that they have considerable functional significance, both as herbivores and as prey for higher trophic levels. Population and assemblage studies are supported by good ecological knowledge about most species and modern identification keys. Hitherto, most studies have focused on the composition and structure of assemblages and how they are affected by conservation management. However, grasslands support many rare species with small and fragmented populations which deserve conservation attention in their own right, and recent work has started to reflect this. The effects of management on the composition and structure of grassland leafhopper populations and assemblages are described and an assessment is given of the main threats facing individual species and overall diversity. There is a need to synthesise the scattered literature on grassland leafhoppers, to provide a model for how the composition and structure of populations and assemblages respond to major environmental and anthropogenic gradients across large biogeographic areas. Such an analysis could help predict the impact of likely future changes in land use and climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.