Bacteria in the genera Mycoplasma and Ureaplasma do not have cell walls and therefore interact with host cells through lipid-associated membrane proteins (LAMP). These lipoproteins are important for both surface adhesion and modulation of host immune responses. Mycoplasma and Ureaplasma have been implicated in cases of bacterial vaginosis (BV), which can cause infertility, abortion, and premature delivery. In contrast, bacteria of the genus Lactobacillus, which are present in the vaginal microbiota of healthy women, are thought to inhibit local colonization by pathogenic microorganisms. The aim of the present study was to evaluate the in vitro interactions between lipoproteins of Mycoplasma and Ureaplasma species and vaginal lineage (HMVII) cells and to study the effect of Lactobacillus isolates from cocoa fermentation on these interactions. The tested Lactobacillus strains showed some important probiotic characteristics, with autoaggregation percentages of 28.55% and 31.82% for L. fermentum FA4 and L. plantarum PA3 strains, respectively, and percent adhesion values of 31.66 and 41.65%, respectively. The two strains were hydrophobic, with moderate to high hydrophobicity values, 65.33% and 71.12% for L. fermentum FA4 and L. plantarum PA3 in toluene. Both strains secreted acids into the culture medium with pH=4.32 and pH=4.33, respectively, and showed antibiotics susceptibility profiles similar to those of other lactobacilli. The strains were also able to inhibit the death of vaginal epithelial cells after incubation with U. parvum LAMP from 41.03% to 2.43% (L. fermentum FA4) and 0.43% (L. plantarum PA3) and also managed to significantly decrease the rate of cell death caused by the interaction with LAMP of M. hominis from 34.29% to 14.06% (L. fermentum FA4) and 14.61% (L. plantarum PA3), thus demonstrating their potential for maintaining a healthy vaginal environment.
Escherichia coli is one of the main pathogens that impacts swine production. Given the need for methods for its control, the in vitro effect of lactic acid bacteria (LAB) and their metabolites against E. coli F4 was evaluated through cell culture and microbiological analysis. The strains Limosilactobacillus fermentum 5.2, Lactiplantibacillus plantarum 6.2, and L. plantarum 7.1 were selected. To evaluate the action of their metabolites, lyophilized cell-free supernatants (CFS) were used. The effect of CFS was evaluated in HT-29 intestinal lineage cells; in inhibiting the growth of the pathogen in agar; and in inhibiting the formation of biofilms. The bioprotective activity of LAB was evaluated via their potential for autoaggregation and coaggregation with E. coli . The CFS did not show cytotoxicity at lower concentrations, except for L. fermentum 5.2 CFS, which is responsible for cell proliferation at doses lower than 10 mg ml−1. The CFS were also not able to inhibit the growth of E. coli F4 in agar; however, the CFS of L. plantarum 7.1 resulted in a significant decrease in biofilm formation at a dose of 40 mg ml−1. Regarding LAB, their direct use showed great potential for autoaggregation and coaggregation in vitro, thus suggesting possible effectiveness in animal organisms, preventing E. coli fixation and proliferation. New in vitro tests are needed to evaluate lower doses of CFS to control biofilms and confirm the bioprotective potential of LAB, and in vivo tests to assess the effect of LAB and their metabolites interacting with animal physiology.
O objetivo desse estudo foi verificar a contaminação microbiológica de resinas compostas utilizadas em uma clínica-escola de Odontologia. Trata-se de uma pesquisa experimental/laboratorial, na qual foram coletadas amostras de 10 bisnagas de resina composta, sendo uma delas o controle negativo. Porções de resina composta contidas no interior das bisnagas foram coletadas e mergulhadas em tubos de ensaio contendo caldo nutriente e posterior semeadura em placas e coloração para caracterizar as colônias e observar bactérias e fungos. Todas as amostras apresentaram contaminação, inclusive o tubo contendo meio de cultura utilizado como controle de manuseio do experimento. Essas contaminações podem ter relação com as falhas dos meios de biossegurança empregados na clínica-escola e com os métodos de transporte e armazenamento das bisnagas de resina composta. Portanto, existe a necessidade de conscientização dos estudantes e docentes para a adoção de medidas de biossegurança específicas para o manuseio das resinas compostas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.