Glia are of vital importance for all complex nervous system. One of the many functions of glia is to insulate and provide trophic and metabolic support to axons. Here, using glial-specific RNAi knockdown in Drosophila, we silenced 6930 conserved genes in adult flies to identify essential genes and pathways. Among our screening hits, metabolic processes were highly represented, and genes involved in carbohydrate and lipid metabolic pathways appeared to be essential in glia. One critical pathway identified was de novo ceramide synthesis. Glial knockdown of lace, a subunit of the serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathies in humans, resulted in ensheathment defects of peripheral nerves in Drosophila. A genetic dissection study combined with shotgun high-resolution mass spectrometry of lipids showed that levels of ceramide phosphoethanolamine are crucial for axonal ensheathment by glia. A detailed morphological and functional analysis demonstrated that the depletion of ceramide phosphoethanolamine resulted in axonal defasciculation, slowed spike propagation, and failure of wrapping glia to enwrap peripheral axons. Supplementing sphingosine into the diet rescued the neuropathy in flies. Thus, our RNAi study in Drosophila identifies a key role of ceramide phosphoethanolamine in wrapping of axons by glia.
The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs), schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster, an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs) are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others) in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4) has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.
The descending contralateral movement detector (DCMD), an identified descending interneuron in the brain of the locust Schistocerca gregaria has been investigated by using light and electron microscopy. We describe the fine structure, distribution and numbers of synapses that it receives from another identified brain neuron, the lobular giant movement detector (LGMD), and from unidentified neurons. The DCMD dendrites emerging from the integrative segment vary in form and number between individuals and sexes but always form a flattened dendritic domain. The arborizations and the integrative segment appear to be exclusively postsynaptic. Two types of synaptic contacts (Type 1 and 2) onto the DCMD can be discerned as having either round (Type 1) or pleiomorphic synaptic vesicles (Type 2) and by large (Type 1) or small (Type 2) subsynaptic appositions. Contact zones of Type 1 synapses are smaller than those of Type 2. LGMD-synapses are of Type 1 and occur intermingled with presynaptic sites of unidentified units. Some branches of the DCMD receiving input from unidentified units are devoid of contacting LGMD processes. Synapses of both types are randomly distributed over the DCMD integrative segment and at fibres with similar sizes. Type 1 synapses are much more frequent than Type 2 synapses and their number is negatively correlated with fibre diameter. For a whole DCMD dendritic arborization, a total of 8500 active zones of chemical synapses has been calculated, including a minimum of 2250 LGMD-synapses and about 1000 Type 2 synapses. The DCMD may thus receive a considerable amount of input from as yet unidentified neurons.
Responses to sensory stimuli and spike activity during walking were investigated in bilaterally symmetrical dorsal unpaired median (DUM) neurons of the cricket. Intracellular recordings within the prothoracic ganglion were made either in restrained animals or in stationary walking specimens whilst parameters of their intended locomotion were measured. Three types of DUM cells were distinguished morphologically and physiologically. DUMa neurons send axons through segmental nerves. They often generated spontaneously large action potentials with low frequencies. Most DUMa neurons showed multimodal sensitivity, preferentially to cercal wind puffs and 15 kHz sound. Mean latencies ranged from 25 to 349 ms. Their large intraindividual variability could be correlated with behavioral modes during walking. Generally, the spike frequency increased with increased forward speed, while it was not related to turning. DUMb neurons projected either through the anterior or posterior connectives, but seemed physiologically similar to DUMa neurons. DUMc neurons were H-shaped with axons in both pairs of connectives. No external stimulus led to discrete spikes, but the regular spontaneous activity was modulated following cercal wind puffs to a restrained animal. During wind evoked escape the spike activity of another DUMc cell was modulated in phase with the rhythmic running behavior. The possibly different functions of DUMa and DUMc neurons during walking are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.