These two authors contributed equally to this work. SUMMARYThe establishment of meristematic domains with different transcriptional activity is essential for many developmental processes. The asymmetry of the Antirrhinum majus flower is established by transcription factors with an asymmetric pattern of activity. To understand how this asymmetrical pattern is established, we studied the molecular mechanism through which the dorsal MYB protein RADIALIS (RAD) restricts the activity of the MYB transcription factor DIVARICATA (DIV) to the ventral region of the flower meristem. We show that RAD competes with DIV for binding with other MYB-like proteins, termed DRIF1 and DRIF2 (DIVand-RAD-interacting-factors). DRIF1 and DIV interact to form a protein complex that binds to the DIV-DNA consensus region, suggesting that the DRIFs act as co-regulators of DIV transcriptional activity. In the presence of RAD, the interaction between DRIF1 and DIV bound to DNA is disrupted. Moreover, the DRIFs are sequestered in the cytoplasm by RAD, thus, preventing or reducing the formation of DRIF-DIV heterodimers in the nuclei. Our results suggest that in the dorsal region of the Antirrhinum flower meristem the dorsal protein RAD antagonises the activity of the ventral identity protein DIV in a subcellular competition for a DRIF protein promoting the establishment of the asymmetric pattern of gene activity in the Antirrhinum flower.
Protein post-translational modifications diversify the proteome and install new regulatory levels that are crucial for the maintenance of cellular homeostasis. Over the last decade, the ubiquitin-like modifying peptide small ubiquitin-like modifier (SUMO) has been shown to regulate various nuclear processes, including transcriptional control. In plants, the sumoylation pathway has been significantly implicated in the response to environmental stimuli, including heat, cold, drought, and salt stresses, modulation of abscisic acid and other hormones, and nutrient homeostasis. This review focuses on the emerging importance of SUMO in the abiotic stress response, summarizing the molecular implications of sumoylation and emphasizing how high-throughput approaches aimed at identifying the full set of SUMO targets will greatly enhance our understanding of the SUMO-abiotic stress association.
Basic leucine zipper (bZIP) transcription factors control important developmental and physiological processes in plants. In Arabidopsis thaliana, the three gene F-bZIP subfamily has been associated with zinc deficiency and salt stress response. Benefiting from the present abundance of plant genomic data, we performed an evolutionary and structural characterization of plant F-bZIPs. We observed divergence during seed plant evolution, into two groups and inferred different selective pressures for each. Group 1 contains AtbZIP19 and AtbZIP23 and appears more conserved, whereas Group 2, containing AtbZIP24, is more prone to gene loss and expansion events. Transcriptomic and experimental data reinforced AtbZIP19/23 as pivotal regulators of the zinc deficiency response, mostly via the activation of genes from the ZIP metal transporter family, and revealed that they are the main regulatory switch of AtZIP4. A survey of AtZIP4 orthologs promoters across different plant taxa revealed an enrichment of the Zinc Deficiency Response Element (ZDRE) to which both AtbZIP19/23 bind. Overall, our results indicate that while the AtbZIP24 function in the regulation of the salt stress response may be the result of neo-functionalization, the AtbZIP19/23 function in the regulation of the zinc deficiency response may be conserved in land plants (Embryophytes).
The F-bZIP transcription factors bZIP19 and bZIP23 are the central regulators of the zinc deficiency response in Arabidopsis, and phylogenetic analysis of F-bZIP homologs across land plants indicates that the regulatory mechanism of the zinc deficiency response may be conserved. Here, we identified the rice F-bZIP homologs and investigated their function. OsbZIP48 and OsbZIP50, but not OsbZIP49, complement the zinc deficiency-hypersensitive Arabidopsis bzip19bzip23 double mutant. Ectopic expression of OsbZIP50 in Arabidopsis significantly increases plant zinc accumulation under control zinc supply, suggesting an altered Zn sensing in OsbZIP50. In addition, we performed a phylogenetic analysis of F-bZIP homologs from representative monocot species that supports the branching of plant F-bZIPs into Group 1 and Group 2. Our results suggest that regulation of the zinc deficiency response in rice is conserved, with OsbZIP48 being a functional homolog of AtbZIP19 and AtbZIP23. A better understanding of the mechanisms behind the Zn deficiency response in rice and other important crops will contribute to develop plant-based strategies to address the problems of Zn deficiency in soils, crops, and cereal-based human diets.
Conventional RNA isolation methods optimised for pine seedlings have been shown to produce poor quality RNA when applied to needles of adult pine trees. We describe here a modified procedure to isolate high pure RNA from needles of thirty-year-old maritime pines, exhibiting high levels of phenolics, polysaccharides and RNases. Major changes were the inclusion of proteinase K in the extraction medium followed by incubation at 42°C. Integrity and purity were evaluated by denaturing gel electrophoresis and by spectrophotometry (A 260 /A 230 and A 260 /A 280). Total RNA could be successfully used for poly(A) +-RNA isolation and cDNA library construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.