Vision, a glyphosate-based herbicide containing a 15% (weight:weight) polyethoxylated tallow amine surfactant blend, and the concurrent factor of pH were tested to determine their interactive effects on early life-stage anurans. Ninety-six-hour laboratory static renewal studies, using the embryonic and larval life stages (Gosner 25) of Rana clamitans, R. pipiens, Bufo americanus, and Xenopus laevis, were performed under a central composite rotatable design. Mortality and the prevalence of malformations were modeled using generalized linear models with a profile deviance approach for obtaining confidence intervals. There was a significant (p < 0.05) interaction of pH with Vision concentration in all eight models, such that the toxicity of Vision was amplified by elevated pH. The surfactant is the major toxic component of Vision and is hypothesized, in this study, to be the source of the pH interaction. Larvae of B. americanus and R. clamitans were 1.5 to 3.8 times more sensitive than their corresponding embryos, whereas X. laevis and R. pipiens larvae were 6.8 to 8.9 times more sensitive. At pH values above 7.5, the Vision concentrations expected to kill 50% of the test larvae in 96-h (96-h lethal concentration [LC50]) were predicted to be below the expected environmental concentration (EEC) as calculated by Canadian regulatory authorities. The EEC value represents a worst-case scenario for aerial Vision application and is calculated assuming an application of the maximum label rate (2.1 kg acid equivalents [a.e.]/ha) into a pond 15 cm in depth. The EEC of 1.4 mg a.e./L (4.5 mg/L Vision) was not exceeded by 96-h LC50 values for the embryo test. The larvae of the four species were comparable in sensitivity. Field studies should be completed using the more sensitive larval life stage to test for Vision toxicity at actual environmental concentrations.
The co-occurrence of Fusarium mycotoxins in contaminated swine diets has been shown to result in synergistic toxicity beyond that observed for individual toxins. An experiment was conducted, therefore, to investigate the effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth, brain regional neurochemistry, serum immunoglobulin (Ig) concentrations, serum chemistry, hematology, and organ weights of starter pigs. Three levels of glucomannan polymer (GM polymer, extract of yeast cell wall, Alltech Inc.) were also tested for its efficacy to overcome Fusarium mycotoxicoses. A total of 175 starter pigs (initial weight of 10 +/- 1.1 kg) were fed five diets (seven pens of five pigs per diet) for 21 d. Diets included (1) control, (2) blend of contaminated grains, (3) contaminated grains + 0.05% GM polymer (4) contaminated grains + 0.10% GM polymer and (5) contaminated grains + 0.20% GM polymer. Diets containing contaminated grains averaged 5.5 ppm deoxynivalenol, 0.5 ppm 15-acetyldeoxynivalenol, 26.8 ppm fuuric acid, and 0.4 ppm zearalenone. Feed intake and weight gain of all pigs fed contaminated grains was significantly reduced compared to controls throughout the experiment. The weights of liver and kidney, expressed as a percentage of body weight, were lower in pigs fed the contaminated diet than in those fed the control diet. The feeding of contaminated grains significantly reduced concentrations of dopamine in the hypothalamus and pons and concentrations of dihydroxyphenylacetic acid and norepinephrine in the pons. The ratios of 5-hydroxyindoleacetic acid to serotonin, however, were elevated in the hypothalamus and pons. The feeding of contaminated grains increased serum IgM and IgA concentrations, while serum IgG concentrations were not altered. The supplementation of GM polymer prevented some of the mycotoxin-induced alterations in brain neurotransmitter and serum Ig concentrations. In summary, the feeding of grains naturally contaminated with Fusarium mycotoxins reduced growth, altered brain neurochemistry, increased serum Ig concentrations, and decreased organ weights in starter pigs. Some of the Fusarium mycotoxin-induced changes in neurochemistry and serum Ig concentrations can be prevented by the feeding of yeast cell wall polymer at appropriate concentrations, although this was not reflected in increased growth rate under these experimental conditions.
An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on growth and immunological parameters of broiler chickens. Three hundred sixty, 1-d-old male broiler chicks were fed 1 of 4 diets containing grains naturally contaminated with Fusarium mycotoxins for 56 d. The diets included (1) control; (2) low level of contaminated grains (5.9 mg/kg deoxynivalenol (DON), 19.1 mg/kg fusaric acid (FA), 0.4 mg/kg zearalenone, and 0.3 mg/kg 15-acetyldeoxynivalenol; (3) high level of contaminated grains (9.5 mg/kg DON, 21.4 mg/kg FA, 0.7 mg/kg zearalenone, and 0.5 mg/kg 15-acetyldeoxynivalenol); and (4) high level of contaminated grains + 0.2% polymeric glucomannan mycotoxin adsorbent (GM polymer). Body weight gains and feed consumption of chickens fed contaminated grains decreased linearly with the inclusion of contaminated grains during the grower phase (d 21 to 42). Efficiency of feed utilization, however, was not affected by diet. Production parameters were not significantly affected by the supplementation of GM polymer to the contaminated grains. Peripheral blood monocytes decreased linearly in birds fed contaminated grains. The feeding of contaminated diets linearly reduced the B-cell count at the end of the experiment, whereas the T-cell count on d 28 responded quadratically to the contaminated diets. The feeding of contaminated diets did not significantly alter serum or bile immunoglobulin concentrations, contact hypersensitivity to dinitrochlorobenzene, or antibody response to SRBC. Supplementation with GM polymer in the contaminated diet nonspecifically increased white blood cell count and lymphocyte count, while preventing mycotoxin-induced decreases in B-cell counts. It was concluded that broiler chickens are susceptible during extended feeding of grains naturally contaminated with Fusarium mycotoxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.