The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research.
Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria.
Mycotoxins contaminate cereal grains worldwide, and their presence in pet food has been a potential health threat to companion animals. Aflatoxins, ochratoxin A, and Fusarium mycotoxins have been found in both raw ingredients and final products of pet food around the globe. Aflatoxin, a hepatotoxin and carcinogen, has caused several food poisoning outbreaks in dogs, and aflatoxin content is regulated in pet food in many countries. Ochratoxin A and Fusarium mycotoxins including trichothecenes, zearalenone, and fumonisins may have chronic effects on the health of companion animals. Grain processing, sampling error, analytical methods, conjugated mycotoxins, storage conditions, and synergistic interactions are common challenges faced by the pet food industry. Food-processing techniques such as sieving, washing, pearling, ozonation, and acid-based mold inhibition reduce the mycotoxin content of cereal grains. Dietary supplementation with large neutral amino acids, antioxidants, and omega-3 polysaturated fatty acids as well as inclusion of mycotoxin-sequestering agents and detoxifying microbes may ameliorate the harmful effects of mycotoxins in contaminated pet food.
BackgroundMitochondrial DNA (mtDNA) is present in multiple copies per cell and undergoes dramatic amplification during development. The impacts of mtDNA damage incurred early in development are not well understood, especially in the case of types of mtDNA damage that are irreparable, such as ultraviolet C radiation (UVC)-induced photodimers.MethodsWe exposed first larval stage nematodes to UVC using a protocol that results in accumulated mtDNA damage but permits nuclear DNA (nDNA) repair. We then measured the transcriptional response, as well as oxygen consumption, ATP levels, and mtDNA copy number through adulthood.ResultsAlthough the mtDNA damage persisted to the fourth larval stage, we observed only a relatively minor ~40% decrease in mtDNA copy number. Transcriptomic analysis suggested an inhibition of aerobic metabolism and developmental processes; mRNA levels for mtDNA-encoded genes were reduced ~50% at 3 hours post-treatment, but recovered and, in some cases, were upregulated at 24 and 48 hours post-exposure. The mtDNA polymerase γ was also induced ~8-fold at 48 hours post-exposure. Moreover, ATP levels and oxygen consumption were reduced in response to UVC exposure, with marked reductions of ~50% at the later larval stages.ConclusionsThese results support the hypothesis that early life exposure to mitochondrial genotoxicants could result in mitochondrial dysfunction at later stages of life, thereby highlighting the potential health hazards of time-delayed effects of these genotoxicants in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.