Maintaining spatial orientation while travelling requires integrating spatial information encountered from an egocentric viewpoint with accumulated information represented within egocentric and/or allocentric reference frames. Here, we report changes in high-density EEG activity during a virtual tunnel passage task in which subjects respond to a postnavigation homing challenge in distinctly different ways—either compatible with a continued experience of the virtual environment from a solely egocentric perspective or as if also maintaining their original entrance orientation, indicating use of a parallel allocentric reference frame. By spatially filtering the EEG data using independent component analysis, we found that these two equal subject subgroups exhibited differences in EEG power spectral modulation during tunnel passages in only a few cortical areas. During tunnel turns, stronger alpha blocking occurred only in or near right primary visual cortex of subjects whose homing responses were compatible with continued use of an egocentric reference frame. In contrast, approaching and during tunnel turns, subjects who responded in a way compatible with use of an allocentric reference frame exhibited stronger alpha blocking of occipito-temporal, bilateral inferior parietal, and retrosplenial cortical areas, all areas implicated by hemodynamic imaging and neuropsychological observation in construction and maintenance of an allocentric reference frame. We conclude that in these subjects, stronger activation of retrosplenial and related cortical areas during turns support a continuous translation of egocentrically experienced visual flow into an allocentric model of their virtual position and movement.
Humans can experience fake body parts as theirs just by simple visuo-tactile synchronous stimulation. This bodyillusion is accompanied by a drift in the perception of the real limb towards the fake limb, suggesting an update of body estimation resulting from stimulation. This work compares body limb drifting patterns of human participants, in a rubber hand illusion experiment, with the end-effector estimation displacement of a multisensory robotic arm enabled with predictive processing perception. Results show similar drifting patterns in both human and robot experiments, and they also suggest that the perceptual drift is due to prediction error fusion, rather than hypothesis selection. We present body inference through prediction error minimization as one single process that unites predictive coding and causal inference and that it is responsible for the effects in perception when we are subjected to intermodal sensory perturbations.
were supported by DFG, German Research Foundation (project number 222641018 -SFB/TTR 135). Data, code and pre-registration protocols are available at https://osf.io/kyhu7/ (Experiment 1) and https://osf.io/sy342/ (Experiment 2). The data discussed in this article were first published in "The Confidence Database", https://osf.io/s46pr/ (Rahnev et al., 2020). We have no known conflict of interest to disclose. AbstractWe can make exquisitely precise movements without the apparent need for conscious monitoring.But can we monitor the low-level movement parameters when prompted? And what are the mechanisms that allow us to monitor our movements? To answer these questions, we designed a semi-virtual ball throwing task. On each trial, participants first threw a virtual ball by moving their arm (with or without visual feedback, or replayed from a previous trial) and then made a twoalternative forced choice on the resulting ball trajectory. They then rated their confidence in their decision. We measured metacognitive efficiency using meta-d'/d' and compared it between different informational domains of the first-order task (motor, visuomotor or visual information alone), as well as between two different versions of the task based on different parameters of the movement: proximal (position of the arm) or distal (resulting trajectory of the ball thrown).We found that participants were able to monitor their performance based on distal motor information as well as when proximal information was available. Their metacognitive efficiency was also equally high in conditions with different sources of information available. The analysis of correlations across participants revealed an unexpected result: while metacognitive efficiency correlated between informational domains (which would indicate domain-generality of metacognition), it did not correlate across the different parameters of movement. We discuss possible sources of this discrepancy and argue that specific first-order task demands may play a crucial role in our metacognitive ability and should be considered when making inferences about domain-generality based on correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.