Collection, processing, and analysis of GIS and satellite data were performed in this work to estimate temporal groundwater recharge changes, which are needed as input in numerical groundwater-flow models. Layers of geological alignments, land use, drainage network, lithology, topography, and precipitation were collected. This information was spatialized, and then layer importance was calculated using an analytic hierarchy process (AHP) based on infiltration capacity to define potential recharge (PR) regions. A water budget equation was used to calculate PR volumes. The analysis was done every 5 years from 1970 to 2019, considering average urban area changes. For all study periods, an increase in urban area was calculated from 16 to 28% of the total study area, while potential recharge decreased from 23 to 19% of the mean precipitation values for each 5-year period. The most significant urban expansion was from 1980 to 1994 and 2010 to 2019, which match periods of potential recharge decrease. However, a slight increase in PR from 2000 to 2009, unrelated to urban area change, may be due to temperature variations. The results account for the spatial and temporal dynamics of the recharge in the study area and can be used as input data to calibrate the actual recharge in a groundwater numerical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.