Mt Ontake in central Japan suddenly erupted on 27th September 2014, killing 57 people with 6 still missing. It was a hydro-volcanic eruption and new magmatic material was not detected. There were no precursor signals such as seismicity and edifice inflation. It is difficult to predict hydro-volcanic eruptions because they are local phenomena that only affect a limited area surrounding the explosive vent. Here we report a long-term helium anomaly measured in hot springs close to the central cone. Helium-3 is the most sensitive tracer of magmatic volatiles. We have conducted spatial surveys around the volcano at once per few years since November 1981. The 3He/4He ratios of the closest site to the cone stayed constant until June 2000 and increased significantly from June 2003 to November 2014, while those of distant sites showed no valuable change. These observations suggest a recent re-activation of Mt Ontake and that helium-3 enhancement may have been a precursor of the 2014 eruption. We show that the eruption was ultimately caused by the increased input of magmatic volatiles over a ten-year period which resulted in the slow pressurization of the volcanic conduit leading to the hydro-volcanic event in September 2014.
Hydraulic fracturing is becoming an important technique worldwide to recover hydrocarbons from unconventional sources such as shale gas. In Quebec (Canada), the Utica Shale has been identified as having unconventional gas production potential. However, there has been a moratorium on shale gas exploration since 2010. The work reported here was aimed at defining baseline concentrations of methane in shallow aquifers of the St. Lawrence Lowlands and its sources using δ(13)C methane signatures. Since this study was performed prior to large-scale fracturing activities, it provides background data prior to the eventual exploitation of shale gas through hydraulic fracturing. Groundwater was sampled from private (n = 81), municipal (n = 34), and observation (n = 15) wells between August 2012 and May 2013. Methane was detected in 80% of the wells with an average concentration of 3.8 ± 8.8 mg/L, and a range of <0.0006 to 45.9 mg/L. Methane concentrations were linked to groundwater chemistry and distance to the major faults in the studied area. The methane δ(1)(3)C signature of 19 samples was > -50‰, indicating a potential thermogenic source. Localized areas of high methane concentrations from predominantly biogenic sources were found throughout the study area. In several samples, mixing, migration, and oxidation processes likely affected the chemical and isotopic composition of the gases, making it difficult to pinpoint their origin. Energy companies should respect a safe distance from major natural faults in the bedrock when planning the localization of hydraulic fracturation activities to minimize the risk of contaminating the surrounding groundwater since natural faults are likely to be a preferential migration pathway for methane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.