An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ 2 H VSMOW-SLAP values from-210.8 to +397.0 mUr or ‰, for δ 13 C VPDB-LSVEC from-40.81 to +0.49 mUr, and for δ 15 N Air from-5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C 16 nalkanes, n-C 20-fatty acid methyl esters (FAMEs), glycines, and L-valines, together with polyethylene powder and string, one n-C 17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2 H-enriched vacuum oil. Eleven laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic calibrations against international primary measurement standards. The use of reference waters in silver tubes allowed direct calibration of δ 2 H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Due to exchangeable hydrogen, amino acid RMs currently are recommended only for carbon-and nitrogen-isotope measurements. Some amino acids contain 13 C and carbon-bound organic 2 Henrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
[1] We present here the first comprehensive assessment of the carbon (C) footprint associated with the creation of a boreal hydroelectric reservoir (Eastmain-1 in northern Québec, Canada). This is the result of a large-scale, interdisciplinary study that spanned over a 7-years period (2003)(2004)(2005)(2006)(2007)(2008)(2009)), where we quantified the major C gas (CO 2 and CH 4 ) sources and sinks of the terrestrial and aquatic components of the pre-flood landscape, and also for the reservoir following the impoundment in 2006. The pre-flood landscape was roughly neutral in terms of C, and the balance between pre-and post-flood C sources/sinks indicates that the reservoir was initially (first year post-flood in 2006) a large net source of CO 2 (2270 mg C m À2 d À1) but a much smaller source of CH 4 (0.2 mg C m À2 d À1). While net CO 2 emissions declined steeply in subsequent years (down to 835 mg C m À2 d À1 in 2009), net CH 4 emissions remained constant or increased slightly relative to pre-flood emissions. Our results also suggest that the reservoir will continue to emit carbon gas over the long-term at rates exceeding the carbon footprint of the pre-flood landscape, although the sources of C supporting these emissions have yet to be determined. Extrapolation of these empirical trends over the projected life span (100 years) of the reservoir yields integrated long-term net C emissions per energy generation well below the range of the natural-gas combined-cycle, which is considered the current industry standard.
Rationale NBS19 carbonate, a primary reference material (RM) for the Vienna Pee Dee Belemnite (VPDB) scale realisation introduced in 1987, was exhausted in 2009, and no primary RM was available for several years. This study describes the preparation and characterisation of a new RM, IAEA‐603 (Ca‐carbonate, calcite of marble origin), which shall serve as a new primary RM (replacement for NBS19) or primary calibrator aimed at the highest realisation of the VPDB scale for δ13C and δ18O values, including the VPDB‐CO2 δ18O scale. Methods IAEA‐603 preparation and characterisation (value transfer) against NBS19 were performed by addressing the major modern technical requirements for the production and characterisation of RMs (ISO Guide 35). IAEA‐603 was produced in a large quantity, and the first batch was sealed into ampoules (0.5 g) to ensure RM integrity during storage; four other batches were sealed for long‐term storage. The most accurate method of CO2 preparation for isotope mass spectrometry was used, namely carbonate–H3PO4 reaction under controlled conditions. Results The assigned values of δ13C = +2.460 ± 0.010‰ and δ18O = −2.370 ± 0.040‰ (k = 1) are based on a large number of analyses (~10 mg aliquots) performed at IAEA and address all the known uncertainty components. For aliquots down to 120 μg, the δ18O uncertainty remains unchanged but shall be doubled for δ13C. The uncertainty components considered are as follows: (a) material homogeneity (within and between the 5200 ampoules produced), (b) value assignment against NBS19, (c) storage effects and (d) effect of the 17O correction. Conclusions The new primary RM IAEA‐603 replaces NBS19 in its use as the highest calibrator for the VPDB δ13C and δ18O scale, including the VPDB‐CO2 δ18O scale. The use of IAEA‐603 will allow laboratories worldwide to establish consistent realisation of the scales for δ13C and δ18O values and metrological comparability of measurement results for decades. The VPDB scale definition based on NBS19 stays valid.
Hydraulic fracturing is becoming an important technique worldwide to recover hydrocarbons from unconventional sources such as shale gas. In Quebec (Canada), the Utica Shale has been identified as having unconventional gas production potential. However, there has been a moratorium on shale gas exploration since 2010. The work reported here was aimed at defining baseline concentrations of methane in shallow aquifers of the St. Lawrence Lowlands and its sources using δ(13)C methane signatures. Since this study was performed prior to large-scale fracturing activities, it provides background data prior to the eventual exploitation of shale gas through hydraulic fracturing. Groundwater was sampled from private (n = 81), municipal (n = 34), and observation (n = 15) wells between August 2012 and May 2013. Methane was detected in 80% of the wells with an average concentration of 3.8 ± 8.8 mg/L, and a range of <0.0006 to 45.9 mg/L. Methane concentrations were linked to groundwater chemistry and distance to the major faults in the studied area. The methane δ(1)(3)C signature of 19 samples was > -50‰, indicating a potential thermogenic source. Localized areas of high methane concentrations from predominantly biogenic sources were found throughout the study area. In several samples, mixing, migration, and oxidation processes likely affected the chemical and isotopic composition of the gases, making it difficult to pinpoint their origin. Energy companies should respect a safe distance from major natural faults in the bedrock when planning the localization of hydraulic fracturation activities to minimize the risk of contaminating the surrounding groundwater since natural faults are likely to be a preferential migration pathway for methane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.