Short-term electricity load demand forecast is a vital requirements for power systems. This research considers the combination of exponential smoothing for double seasonal patterns and neural network model. The linear version of Holt-Winter method is extended to accommodate a second seasonal component. In this work, the Fourier with time varying coefficient is presented as a means of seasonal extraction. The methodological contribution of this paper is to demonstrate how these methods can be adapted to model the time series data with multiple seasonal pattern, correlated non stationary error and nonlinearity components together. The proposed hybrid model is started by implementing exponential smoothing state space model to obtain the level, trend, seasonal and irregular components and then use them as inputs of neural network. Forecasts of future values are then can be obtained by using the hybrid model. The forecast performance was characterized by root mean square error and mean absolute percentage error. The proposed hybrid model is applied to two real load series that are energy consumption in Bawen substation and in Java-Bali area. Comparing with other existing models, results show that the proposed hybrid model generate the most accurate forecast
Abstract. Box-Cox transformation is often used to reduce heterogeneity and to achieve a symmetric distribution of response variable. In this paper, we estimate the parameters of Box-Cox transformed ARCH(1) model using second-order least square method and then we study the consistency and asymptotic normality for second-order least square (SLS) estimators. The SLS estimation was introduced by Wang (2003Wang ( , 2004 to estimate the parameters of nonlinear regression models with independent and identically distributed errors.Key words: Box-Cox transformation, second-order least square, ARCH model.Abstrak. Transformasi Box-Cox sering digunakan untuk mengurangi heterogenitas dan mencapai distribusi simetris dari variabel respon. Pada paper ini dibahas estimasi parameter dari model ARCH(1) di mana variabel responnya ditransformasi Box-Cox dengan menggunakan metode estimasi second-order least square dan selanjutnya diteliti konsistensi dan normalitas asimtotik dari estimator second-order least square. Metode ini pertama kali diperkenalkan oleh Wang (2003Wang ( , 2004) untuk mengestimasi parameter model regresi nonlinier yang variabel errornya berdistribusi identik dan independen.Kata kunci: Transformasi Box-Cox, second-order least square, model ARCH
This study attempted to combine SSA (Singular Spectrum Analysis) with other methods to improve the performance of forecasting model for time series with a complex pattern. This work discussed two modifications of TLSAR (Two-Level Seasonal Autoregressive) modeling by considering the SSA decomposition results, namely TLSNN (Two-Level Seasonal Neural Network) and TLCSNN (Two-Level Complex Seasonal Neural Network). TLSAR consisted of a linear trend, harmonic, and autoregressive component. In contrast, the two proposed hybrid approaches consisted of flexible trend function, harmonic, and neural networks. Trend and harmonic function were considered as the deterministic part identified based on SSA decomposition. Meanwhile, NN was intended to handle the nonlinearity relationship in the stochastic part. These two SSA-based hybrid models were contemplated to be more flexible than TLSAR and more applicable to the series with an intricate pattern. The experimental studies to the monthly accidental deaths in USA and daily electricity load Jawa-Bali showed that the proposed SSA-based hybrid model reduced RMSE for the testing data from that obtained by TLSAR model up to 95%.
The Geographically Weighted Panel Regression (GWPR) is a development of a global regression model where the basic idea is taken from a combination of panel data and GWR. The GWPR model is built from the point approach method, which is based on the position of the coordinates of latitude and longitude. The parameters for the regression model at each location will produce different values. GWPR can accommodate spatial effects, so that it can better explain the relationship between response variables and predictors. The purpose of this study is to compare the GWPR model with the Fixed Gaussian and Adaptive Bisquare weighting functions based on the AIC value. The data used in this study is secondary data taken from the website of the Central Statistics Agency (BPS) in the form of Per-Capita Expenditure Figures in South Sumatra in 2013-2019. This research results that in the case of the Per-Capita Expenditure Rate (AP), it is better to use the GWPR method with a fixed gaussian weighting function in the modeling, where the resulting coefficient of determination is 95.81% rather than adaptive bisquare with a determination coefficient of 93.3%. The factors that influence the Per-Capita Expenditure Rate (AP) in South Sumatra on the fixed gaussian weighting are divided into 6 groups, while the adaptive bisquare is divided into 2 groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.