The genetic variability and population structure of Plasmodium falciparum are key factors in malaria control strategies. Studies have suggested no P. falciparum population structure although linkage disequilibrium was observed in some African areas. We have assessed length polymorphism at 6-22 microsatellites in four urban and rural sites (Djibouti, Dakar, Niamey, and Zouan-Hounien, n = 240 blood samples). Results have shown a P. falciparum population structure in Africa (Fst = 0.17-0.24), lower genetic diversity in Djibouti (He = 0.53) than in the other sites (He = 0.73-0.76), and 3) significant linkage disequilibrium in Djibouti. These results could be related to geographic isolation and low flow of parasites between sites. They also suggest a potential effect of rural suburbs to generate genetic diversity in towns. This could affect the dispersal of selected drug resistance and should be considered when adapting urban malaria control strategies.
The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence—archeological and genetic—suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.
BackgroundDuffy blood group polymorphisms are important in areas where Plasmodium vivax is present because this surface antigen is thought to act as a key receptor for this parasite. In the present study, Duffy blood group genotyping was performed in febrile uninfected and P. vivax-infected patients living in the city of Nouakchott, Mauritania.MethodsPlasmodium vivax was identified by real-time PCR. The Duffy blood group genotypes were determined by standard PCR followed by sequencing of the promoter region and exon 2 of the Duffy gene in 277 febrile individuals. Fisher's exact test was performed in order to assess the significance of variables.ResultsIn the Moorish population, a high frequency of the FYBES/FYBES genotype was observed in uninfected individuals (27.8%), whereas no P. vivax-infected patient had this genotype. This was followed by a high level of FYA/FYB, FYB/FYB, FYB/FYBES and FYA/FYBES genotype frequencies, both in the P. vivax-infected and uninfected patients. In other ethnic groups (Poular, Soninke, Wolof), only the FYBES/FYBES genotype was found in uninfected patients, whereas the FYA/FYBES genotype was observed in two P. vivax-infected patients. In addition, one patient belonging to the Wolof ethnic group presented the FYBES/FYBES genotype and was infected by P. vivax.ConclusionsThis study presents the Duffy blood group polymorphisms in Nouakchott City and demonstrates that in Mauritania, P. vivax is able to infect Duffy-negative patients. Further studies are necessary to identify the process that enables this Duffy-independent P. vivax invasion of human red blood cells.
In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. African countries see slower dynamic of COVID-19 cases and deaths. One of the assumptions that may explain this later emergence in Africa, and more particularly in malaria endemic areas, would be the use of antimalarial drugs. We investigated the in vitro antiviral activity against SARS-CoV-2 of several antimalarial drugs. Chloroquine (EC 50 = 2.1 μM and EC 90 = 3.8 μM), hydroxychloroquine (EC 50 = 1.5 μM and EC 90 = 3.0 μM), ferroquine (EC 50 = 1.5 μM and EC 90 = 2.4 μM), desethylamodiaquine (EC 50 = 0.52 μM and EC 90 = 1.9 μM), mefloquine (EC 50 = 1.8 μM and EC 90 = 8.1 μM), pyronaridine (EC 50 = 0.72 μM and EC 90 = 0.75 μM) and quinine (EC 50 = 10.7 μM and EC 90 = 38.8 μM) showed in vitro antiviral effective activity with IC 50 and IC 90 compatible with drug oral uptake at doses commonly administered in malaria treatment. The ratio C lung /EC 90 ranged from 5 to 59. Lumefantrine, piperaquine and dihydroartemisinin had IC 50 and IC 90 too high to be compatible with expected plasma concentrations (ratio C max /EC 90 < 0.05). Based on our results, we would expect that countries which commonly use artesunate-amodiaquine or artesunate-mefloquine report fewer cases and deaths than those using artemether-lumefantrine or dihydroartemisinin-piperaquine. It could be necessary now to compare the antimalarial use and the dynamics of COVID-19 country by country to confirm this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.