The Messinian salinity crisis (MSC) [Hsü et al., 1973] has deeply shaped the Mediterranean landscape and triggered large sedimentary deposits (evaporites and clastics) in the deep basins within a short time span. Until recently, the MSC has mainly been analyzed independently, either through outcrops located onshore (e.g. Morocco, Cyprus, Spain, Sardinia, Italy) or through marine seismic profiles in the deep offshore. Each approach bears its own limitations:(1) on the one hand, land outcrops refer to incomplete Messinian successions that are geometrically disconnected from the offshore Messinian deposits owing to tectonics (e.g. Apennines) and/or because they accumulated at an early stage of the crisis in shallow marginal basins (e.g. Spain); (2) on the other hand, seismic profiles from the upper margins down to the deep basins allow to image and explore the entire MSC event as a continuous process, but with a lower resolution and with a lack of stratigraphical and lithological control, in the absence of full recovery of scientific boreholes.We present here a synthesis of a set of modern geophysical data over the Mediterranean and Black seas allowing to image the Messinian markers (erosion surfaces, depositional units and their bounding surfaces) much better than previously and to study the spatio-temporal organisation of these markers from the inner-shelves down to the bathyal plains. The results from thirteen areas located offshore are compared, with common charts and nomenclatures. The comparative and multi-site approach developed here allows to analyse the record of the MSC on margin segments and basins that depict various structural, geodynamical and geological settings, to fix a number of local influencing factors (tectonics, subsidence, inherited topography, sedimentary fluxes...) and to partly assess their influence in facies and geometrical variations of the MSC units. We are thus able to extract from our analysis some recurrent signals related to the MSC ss., allowing us to discuss: (1) the amplitude and modalities of base-level changes during the MSC; (2) the depositional modalities of the MSC units in the deep basins; (3) the location of the erosion product of the margins and to emphasise (4) the major differences between the eastern and western Mediterranean basins. Une meilleure connaissance des enregistrements de la crise de salinité messinienne en domaine marin grâce à l'analyse sismique multi-sitesMots-clés. -Crise de salinité messinienne, Méditerranée, Profils sismiques, Evaporites, Erosion, Clastiques.Résumé. -La crise de salinité messinienne (CSM) [Hsü et al., 1973] a profondément modelé les paysages méditerra-néens et généré d'épaisses accumulations sédimentaires (évaporites et dépôts clastiques) dans les bassins profonds sur une brève période de temps à l'échelle géologique. Jusqu'à présent, la CSM a principalement été étudiée distinctement, à terre, grâce aux affleurements (ex. Maroc, Chypre, Espagne, Sardaigne, Italie…), et en domaine marin, par l'intermé-diaire de profils sismiques. Chacun...
A previously unknown pattern of multiple bottom-simulating reflections (BSRs) occurs on high-resolution reflection seismic data in the Danube deep-sea fan, associated with acoustic features indicating free gas. Our study provides evidence that this pattern is developed in relation with the architecture of distinct channel-levee systems of the Danube fan. Channel-levee systems hosting multiple BSRs act as relatively sealed gas-bearing systems whose top is situated above the base of the gas hydrate stability zone (BGHSZ). Inside these systems, free gas accumulates below the BGHSZ under a combined lithological, structural and stratigraphical control.The uppermost BSR marks the current equilibrium BGHSZ, for a gas composition of more than 99% methane. Model-derived depths of the BGHSZ for different gas compositions and pressure-temperature conditions show that multiple BSRs would correspond to the BGHSZ either for (1) layers of gas hydrates with high contents of heavy hydrocarbons or hydrogen sulphide, or (2) stable climatic episodes with temperatures between glacial values and the present-day conditions. As the gas hydrate compositions required by hypothesis (1) are in sharp contradiction with the general background of the gas composition in the study area, we suggest that multiple BSRs are most probably relics of former positions of the BGHSZ, corresponding to successive steps of climate warming. In this case, they can provide sea-bottom paleotemperature values for these episodes, and hence they are potential new proxies for deciphering past climate conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.