Abstract.We give a simple proof of existence and uniqueness of the solution of the Koiter model for linearly elastic thin shells whose midsurfaces can have charts with discontinuous second derivatives. The proof is based on new expressions for the linearized strain and change of curvature tensors. It also makes use of a new version of the rigid displacement lemma under hypotheses of regularity for the displacement and the midsurface of the shell that are weaker than those required by earlier proofs.Resume. On donne une demonstration simple de l'existence et l'unicite de la solution du modele de Koiter pour des coques minces lineairement elastiques dont les surfaces moyennes peuvent avoir des derivees secondes discontinues. La demonstration est fondee sur de nouvelles expressions des tenseurs linearises de deformation et de changement de courbure. Elle utilise egalement une version nouvelle du lemme du mouvement rigide pour une coque, sous des hypotheses de regularity du deplacement et de la surface moyenne plus faibles que celles des demonstrations anterieures.
An asymptotic expansion method is applied to nonlinear three-dimensional elastic straight slender rods. Nonlinear ordinary differential equations for approximate displacements and explicit formulas for approximate stress distributions are obtained. Mathematical properties of these models are studied.R~sum~. On applique la m&hode des d6veloppements asymptotiques ~ des poutres tridimensionnelles droites, 61anc+es et non lin6airement 61astiques. On en d6duit des 6quations diff6ren-tielles ordinaires non lin6aires pour des d~placements approch+s, ainsi que des formules explicites pour des approximations des distributions de contraintes. On 6tudie les propri6t6s math6matiques de ces mod61es.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.