Abstract-In this paper, we are interested in the diagnosis of discrete event systems modeled by finite transition systems. We propose a model of supervision patterns general enough to capture past occurrences of particular trajectories of the system. Modeling the diagnosis objective by a supervision pattern allows us to generalize the properties to be diagnosed and to render them independent of the description of the system. We first formally define the diagnosis problem in this context. We then derive techniques for the construction of a diagnoser and for the verification of the diagnosticability based on standard operations on transition systems. We show that these techniques are general enough to express and solve in a unified way a broad class of diagnosis problems found in the literature, e.g. diagnosing permanent faults, multiple faults, fault sequences and some problems of intermittent faults.
We are interested in the validation of opacity. Opacity models the impossibility for an attacker to retrieve the value of a secret in a system of interest. Roughly speaking, ensuring opacity provides confidentiality of a secret on the system that must not leak to an attacker. More specifically, we study how we can model-check, verify and enforce at system runtime, several levels of opacity. Besides existing notions of opacity, we also introduce K-step strong opacity, a more practical notion of opacity that provides a stronger level of confidentiality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.