2-Heptanethiol was identified for the first time as a constituent of red and green bell pepper extracts. The chemical structure of this new aroma compound was proposed on the basis of mass spectra and retention indices and confirmed by chemical synthesis and nuclear magnetic resonance spectroscopy measurements. Its aroma properties were described as sulfury, onion-like, and vegetable-like, reminiscent of bell pepper at lower concentrations, with an orthonasal detection threshold of 10 microg/L of water. No differences in odor note and threshold value were observed for the enantiomeric forms, which were prepared from enantiopure 2-heptanol by tosylation, followed by thioacetylation and reduction, giving the target thiol enantiomers.
Parallel synthesis was applied to prepare a series of 3-(acetylthio)-2-alkyl alkanals by Michael addition of thioacetic acid under alkaline conditions to alpha,beta-unsaturated 2-alkyl-substituted aldehydes, which were obtained by aldol condensation of the corresponding primary aldehydes as starting materials. The target compounds were characterized in terms of GC, MS, and NMR data. The sensory properties of the odorants, such as odor quality and odor detection threshold value, were determined with a trained panel. Structure-activity relationships are discussed, suggesting that the 1,3-oxygen-sulfur functionality, required for the "olfactophore" of tropical/vegetable notes, can further be extended to the acetylthio derivatives.
The contamination of food by mineral oil hydrocarbons (MOHs) found in packaging is a long-running concern. A main source of MOHs in foods is the migration of mineral oil from recycled board into the packed food products. Consequently, the majority of food manufacturers have taken protective measures, e.g., by using virgin board instead of recycled fibres and, where feasible, introducing functional barriers to mitigate migration. Despite these protective measures, MOHs may still be observed in low amounts in certain food products, albeit due to different entry points across the food supply chain. In this study, we successfully apply gas chromatography coupled to mass spectrometry (GC-MS) to demonstrate, through marker compounds and the profile of the hydrocarbon response, the possible source of contamination using mainly chocolate and cereals as food matrices. The conventional liquid chromatography-one-dimensional GC coupled to a flame ionisation detector (LC-GC-FID) is a useful screening method, but in cases of positive samples it must be complemented by a confirmatory method such as, for example, GC-MS, allowing a verification of mineral oil contamination. The procedural approach proposed in this study entails profile analysis, marker identification, and interpretation and final quantification.
Gas chromatography-orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) is an emerging technique offering a straightforward access to a resolving power up to 7000. This paper deals with the use of GC-oaTOFMS to identify the flavor components of a complex seafood flavor extract and to quantify furanones formed in model Maillard reactions. A seafood extract was selected as a representative example for complex food flavors and was previously analyzed using GC-quadrupole MS, leaving several molecules unidentified. GC-oaTOFMS analysis was focused on these unknowns to evaluate its potential in flavor research, particularly for determining exact masses. N-Methyldithiodimethylamine, 6-methyl-5-hepten-2-one, and tetrahydro-2,4-dimethyl-4H-pyrrolo[2,1-d]-1,3,5-dithiazine were successfully identified on the basis of the precise mass determination of their molecular ions and their major fragments. A second set of experiments was performed to test the capabilities of the GC-oaTOFMS for quantification. Calibration curves were found to be linear over a dynamic range of 10(3) for the quantification of furanones. The quantitative data obtained using GC-oaTOFMS confirmed earlier results that the formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone was favored in the xylose/glycine model reaction and 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone in the xylose/alanine model reaction. It was concluded that GC-oaTOFMS may become a powerful analytical tool for the flavor chemist for both identification and quantification purposes, the latter in particular when combined with stable isotope dilution assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.