The Lower Palaeozoic rocks exposed in the Brabant-Ardenne region (Belgium, France) recorded the Early Palaeozoic history on the southern margin of the perigondwanan microcontinent of Avalonia, north of the Rheic suture. These rocks crop out in the Brabant basement and in the Ardenne basement inliers within the Variscan Ardenne allochthon. The two main unconformities are classically associated with distinct orogenic episodes, the Late Ordovician ''Ardennian'' event and the Early Devonian ''Brabantian'' event. A review of the current state-of-knowledge with respect to the reconstruction of Early Palaeozoic geodynamics in the Brabant-Ardenne region is presented. It is demonstrated that an unconformity does not necessarily represent an orogenic event, and that the hiatus related to an unconformity does not necessarily coincide with tectonic activity, especially when tectonism is diachronous in nature. The former applies to the Ardennian unconformity, while the latter applies to the Brabantian unconformity. Finally, the well-constrained Brabantian orogeny, as well as the Ardenne-Eifel basin development, is tentatively framed within the Early Palaeozoic geodynamic context of the northern margin of the Rheic realm. By doing so, it is shown that the Brabant-Ardenne region links, both in space and time, the Rheic and Rhenohercynian ocean. To cite this article: M.
Compressional tectonic inversions are classically represented in 2D brittle failure mode (BFM) plots that illustrate the change in differential stress (σ1−σ3) versus the pore-fluid pressure during orogenic shortening. In these BFM plots, the tectonic switch between extension and compression occurs at a differential stress state of zero. However, mostly anisotropic conditions are present in the Earth's crust, making isotropic stress conditions highly questionable. In this study, theoretical 3D stress-state reconstructions are proposed to illustrate the complexity of triaxial stress transitions during compressional inversion of Andersonian stress regimes. These reconstructions are based on successive late burial and early tectonic quartz veins which reflect early Variscan tectonic inversion in the Rhenohercynian foreland fold-and-thrust belt (High-Ardenne Slate Belt, Belgium, Germany). This theoretical exercise predicts that, no matter the geometry of the basin or the orientation of shortening, a transitional ‘wrench’ tectonic regime should always occur between extension and compression. To date, this intermediate regime has never been observed in structures in a shortened basin affected by tectonic inversion. Our study implies that stress transitions are therefore more complex than classically represented in 2D. Ideally, a transitional ‘wrench’ regime should be implemented in BFM plots at the switch between the extensional and compressional regimes.
Pre-conditioning protocols before thermal conductivity tests on a deep clay formation Anisotropic features on thermal conductivity Finite element program to calibrate by back-analysis some soil thermal properties Consistency of direct measurements with back-analysis results
An experimental study on Ypresian clays –one of the potential deep formations in Belgium for the geological disposal of heat-emitting radioactive waste– was undertaken to systematically study its thermal properties and coupled hydro-mechanical response during fast heating pulse tests. An accurate characterisation of the thermal properties is required for assessing the near-field perturbations around disposal galleries that the sedimentary host rock formation will undergo. A new experimental cell adapted to apply the high in situ stresses and with thermal flux sensors was used to directly measure the thermal conductivity at different sample orientations (heat flux orthogonal and parallel to bedding planes). A clear influence of the degree of saturation – despite being close to saturation – and anisotropic features on thermal conductivity have been detected. The study was complemented by performing fast heating pulse tests under constant volume on a new and fully-instrumented axisymmetric cell. The cell allowed recording the pore pressure build-up and dissipation along a heating pulse and under water-undrained conditions.
The presence of an angular unconformity in combination with complex structures in the basement, lacking in the cover, is commonly seen as an indication for an orogenic event pre-dating the unconformity. The recognition of such an older orogenic event becomes, however, less evident in areas where both cover and basement were deformed together during an orogen post-dating the angular unconformity.The validity of this common interpretation has been evaluated at the southern border of the Lower Palaeozoic Rocroi basement inlier (Naux, northern France), where the basement-cover interface is very well exposed. This basement-cover interface, showing an angular unconformity, has classically been interpreted as evidence for an early Palaeozoic tectonometamorphic event, called the Ardennian orogeny, though only one penetrative cleavage, co-genetic with the structures present in both cover and basement, can be observed.A detailed geometrical study shows, however, that the presence of a tilted basement, involving the angular unconformity, provokes a rheological heterogeneity that causes a contrasting response of basement and cover with respect to the Variscan shortening. While Variscan progressive deformation gave rise to a rather regular cleavage refraction pattern in the subhorizontal multilayer cover sequence, a complex deformation, expressed by non-cylindrical folds, boudinage and shearing developed in the basement. The basement-cover interface itself played no rheological role, but has been passively sheared and folded as a consequence of the deformation of the basement. This study proves that the deformed basement-cover interface, allowing to link deformation in basement and cover, is a necessary tool to properly interpret complex deformation in the basement. With respect to the regional geodynamic evolution of the northern parts of the Central European Variscides, our kinematic model indeed demonstrates that this classical outcrop area bears no evidence for an early Palaeozoic orogenic event, and that the angular unconformity reflects the late Silurian – early Devonian onset of the Ardenne-Eifel basin development, rather than a middle Ordovician Ardennian orogeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.