Reactive electrospinning is capable of efficiently producing in situ crosslinked scaffolds resembling the natural extracellular matrix with tunable characteristics. In this study, we aimed to synthesize, characterize, and investigate the in vitro cytocompatibility of electrospun fibers of acrylated poly(1,10-decanediol-co-tricarballylate) copolymer prepared utilizing the photoreactive electrospinning process with ultraviolet radiation for crosslinking, to be used for cardiac tissue engineering applications. Chemical, thermal, and morphological characterization confirmed the successful synthesis of the polymer used for production of the electrospun fibrous scaffolds with more than 70% porosity. Mechanical testing confirmed the elastomeric nature of the fibers required to withstand cardiac contraction and relaxation. The cell viability assay showed no significant cytotoxicity of the fibers on cultured cardiomyoblasts and the cell-scaffolds interaction study showed a significant increase in cell attachment and growth on the electrospun fibers compared to the reference. This data suggests that the newly synthesized fibrous scaffold constitutes a promising candidate for cardiac tissue engineering applications.
Homocystinuria is a rare inborn error of methionine metabolism caused by cystathionine β‐synthase (CBS) deficiency. The prevalence of homocystinuria in Qatar is 1:1,800 births, mainly due to a founder Qatari missense mutation, c.1006C>T; p.R336C (p.Arg336Cys). We characterized the structure–function relationship of the p.R336C‐mutant protein and investigated the effect of different chemical chaperones to restore p.R336C‐CBS activity using three models: in silico, ΔCBS yeast, and CRISPR/Cas9 p.R336C knock‐in HEK293T and HepG2 cell lines. Protein modeling suggested that the p.R336C induces severe conformational and structural changes, perhaps influencing CBS activity. Wild‐type CBS, but not the p.R336C mutant, was able to restore the yeast growth in ΔCBS‐deficient yeast in a complementation assay. The p.R336C knock‐in HEK293T and HepG2 cells decreased the level of CBS expression and reduced its structural stability; however, treatment of the p.R336C knock‐in HEK293T cells with betaine, a chemical chaperone, restored the stability and tetrameric conformation of CBS, but not its activity. Collectively, these results indicate that the p.R336C mutation has a deleterious effect on CBS structure, stability, and activity, and using the chemical chaperones approach for treatment could be ineffective in restoring p.R336C CBS activity.
Continuous attempts to produce the ideal biomimetic nanofibrous scaffolds that resemble extracellular matrix have directed researchers to develop modified electrospinning approaches to fabricate scaffolds with optimal fibrous orientation (anisotropy), porosity, conductivity and mechanical properties "
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.