We consider an irreversible capacity expansion model in which additional investment has a strictly negative effect on the value of an underlying stochastic economic indicator. The associated optimisation problem takes the form of a singular stochastic control problem that admits an explicit solution. A special characteristic of this stochastic control problem is that changes of the state process due to control action depend on the state process itself in a proportional way.
We present closed-form solutions to the perpetual American dividend-paying put and call option pricing problems in two extensions of the Black–Merton–Scholes model with random dividends under full and partial information. We assume that the dividend rate of the underlying asset price changes its value at a certain random time which has an exponential distribution and is independent of the standard Brownian motion driving the price of the underlying risky asset. In the full information version of the model, it is assumed that this time is observable to the option holder, while in the partial information version of the model, it is assumed that this time is unobservable to the option holder. The optimal exercise times are shown to be the first times at which the underlying risky asset price process hits certain constant levels. The proof is based on the solutions of the associated free-boundary problems and the applications of the change-of-variable formula.
We derive closed-form solutions to some discounted optimal stopping problems related to the perpetual American cancellable dividend-paying put and call option pricing problems in an extension of the Black–Merton–Scholes model. The cancellation times are assumed to occur when the underlying risky asset price process hits some unobservable random thresholds. The optimal stopping times are shown to be the first times at which the asset price reaches stochastic boundaries depending on the current values of its running maximum and minimum processes. The proof is based on the reduction of the original optimal stopping problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit and modified normal-reflection conditions. We show that the optimal stopping boundaries are characterised as the maximal and minimal solutions of certain first-order nonlinear ordinary differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.