We define a hierarchy of Hamiltonian PDEs associated to an arbitrary tau-function in the semi-simple orbit of the Givental group action on genus expansions of Frobenius manifolds. We prove that the equations, the Hamiltonians, and the bracket are weighted-homogeneous polynomials in the derivatives of the dependent variables with respect to the space variable.In the particular case of a conformal (homogeneous) Frobenius structure, our hierarchy coincides with the Dubrovin-Zhang hierarchy that is canonically associated to the underlying Frobenius structure. Therefore, our approach allows to prove the polynomiality of the equations, Hamiltonians and one of the Poisson brackets of these hierarchies, as conjectured by Dubrovin and Zhang.
Abstract. In this paper, we study geometric properties of quotient spaces of proper Lie groupoids. First, we construct a natural stratification on such spaces using an extension of the slice theorem for proper Lie groupoids of Weinstein and Zung. Next, we show the existence of an appropriate metric on the groupoid which gives the associated Lie algebroid the structure of a singular riemannian foliation. With this metric, the orbit space inherits a natural length space structure whose properties are studied. Moreover, we show that the orbit space of a proper Lie groupoid can be triangulated. Finally, we prove a de Rham theorem for the complex of basic differential forms on a proper Lie groupoid.
Abstract. We give a systematic description of the cyclic cohomology theory of Hopf algebroids in terms of its associated category of modules. Then we introduce a dual cyclic homology theory by applying cyclic duality to the underlying cocyclic object. We derive general structure theorems for these theories in the special cases of commutative and cocommutative Hopf algebroids. Finally, we compute the cyclic theory in examples associated to Lie-Rinehart algebras and étale groupoids.
Abstract. In our recent paper we proved the polynomiality of a Poisson bracket for a class of infinite-dimensional Hamiltonian systems of PDE's associated to semi-simple Frobenius structures. In the conformal (homogeneous) case, these systems are exactly the hierarchies of Dubrovin-Zhang, and the bracket is the first Poisson structure of their hierarchy.Our approach was based on a very involved computation of a deformation formula for the bracket with respect to the Givental-Y.-P. Lee Lie algebra action. In this paper, we discuss the structure of that deformation formula. In particular, we reprove it using a deformation formula for weak quasi-Miura transformation that relates our hierarchy of PDE's with its dispersionless limit.
In this article, the cyclic homology theory of formal deformation quantizations of the convolution algebra associated to a properétale Lie groupoid is studied. We compute the Hochschild cohomology of the convolution algebra and express it in terms of alternating multi-vector fields on the associated inertia groupoid. We introduce a noncommutative Poisson homology whose computation enables us to determine the Hochschild homology of formal deformations of the convolution algebra. Then it is shown that the cyclic (co)homology of such formal deformations can be described by an appropriate sheaf cohomology theory. This enables us to determine the corresponding cyclic homology groups in terms of orbifold cohomology of the underlying orbifold. Using the thus obtained description of cyclic cohomology of the deformed convolution algebra, we give a complete classification of all traces on this formal deformation, and provide an explicit construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.