Abstract. We investigate the possibility of exactly flat non-trivial Chern bands in tight binding models with local (strictly short-ranged) hopping parameters. We demonstrate that while any two of three criteria can be simultaneously realized (exactly flat band, non-zero Chern number, local hopping), it is not possible to simultaneously satisfy all three. Our theorem covers both the case of a single flat band, for which we give a rather elementary proof, as well as the case of multiple degenerate flat bands. In the latter case, our result is obtained as an application of K-theory. We also introduce a class of models on the Lieb lattice with nearest and next-nearest neighbor hopping parameters, which have an isolated exactly flat band of zero Chern number but, in general, non-zero Berry curvature.
Abstract. In this paper, we study geometric properties of quotient spaces of proper Lie groupoids. First, we construct a natural stratification on such spaces using an extension of the slice theorem for proper Lie groupoids of Weinstein and Zung. Next, we show the existence of an appropriate metric on the groupoid which gives the associated Lie algebroid the structure of a singular riemannian foliation. With this metric, the orbit space inherits a natural length space structure whose properties are studied. Moreover, we show that the orbit space of a proper Lie groupoid can be triangulated. Finally, we prove a de Rham theorem for the complex of basic differential forms on a proper Lie groupoid.
We introduce a new kind of groupoid-a pseudoétale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson manifolds in the framework of deformation quantization.
In this article, the cyclic homology theory of formal deformation quantizations of the convolution algebra associated to a properétale Lie groupoid is studied. We compute the Hochschild cohomology of the convolution algebra and express it in terms of alternating multi-vector fields on the associated inertia groupoid. We introduce a noncommutative Poisson homology whose computation enables us to determine the Hochschild homology of formal deformations of the convolution algebra. Then it is shown that the cyclic (co)homology of such formal deformations can be described by an appropriate sheaf cohomology theory. This enables us to determine the corresponding cyclic homology groups in terms of orbifold cohomology of the underlying orbifold. Using the thus obtained description of cyclic cohomology of the deformed convolution algebra, we give a complete classification of all traces on this formal deformation, and provide an explicit construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.